Chap 25 Review

\[ \newcommand{\dnorm}{\text{dnorm}} \newcommand{\pnorm}{\text{pnorm}} \newcommand{\recip}{\text{recip}} \]

Exercise 1 What is \(\partial_x x\)?

\(0\)       \(1\)       \(x\)       \(y\)      

question id: PD01

Exercise 2 What is \(\partial_x y\)?

\(0\)       \(1\)       \(x\)       \(y\)      

question id: PD02

Exercise 3 What is \(\partial_x a\, x\)?

\(0\)       \(a\)       \(x\)       \(y\)      

question id: PD03

Exercise 4 What is \(\partial_x x\, y\)?

\(0\)       \(1\)       \(x\)       \(y\)      

question id: PD04

Exercise 5 What is \(\partial_y x\, y\)?

\(0\)       \(1\)       \(x\)       \(y\)      

question id: PD05

Exercise 6 What is \(\partial_x A e^{kt}\)?

\(0\)       \(A k e^{kx}\)       \(t\)      

question id: PD06

Exercise 7 What is \(\partial_t A e^{kt}\)?

\(0\)       \(k A e^{kt}\)       \(k A e^{kx}\)       \(t A e^{kt}\)      

question id: PD07

Exercise 8 What is \(\partial_x A x e^{kt}\)?

\(0\)       \(A x e^{kt}\)       \(A k x e^{kt}\)       \(A e^{kt}\)      

question id: PD08

Exercise 9 What is \(\partial_t A x e^{kt}\)?

\(0\)       \(A k e^{kt}\)       \(A k x e^{kt}\)       \(A e^{kt}\)      

question id: PD09

Exercise 10 What is \(\partial_x \left[\strut a_0 + a_1 x + a_2 x^2 \right]\)?

\(a_1 + a_2 x\)       \(a_1 + 2 a_2 x\)       \(a_0 + a_1 x\)       0      

question id: PD10

Exercise 11 What is \(\partial_y \left[\strut a_0 + a_1 x + a_2 x^2 \right]\)?

\(a_1 + a_2 x\)       \(a_1 + 2 a_2 x\)       \(a_1 + 2 a_2 y\)       0      

question id: PD11

Exercise 12 What is \(\partial_x \left[\strut a_0 + a_1 y + a_2 y^2 \right]\)?

\(a_1 + a_2 x\)       \(a_1 + 2 a_2 x\)       \(a_1 + 2 a_2 y\)       0      

question id: PD12

Exercise 13 What is \(\partial_x \left[\strut a_0 + a_1 x + b_1 y + c x y \right]\)?

\(a_1 + cy\)       \(a_1\)       \(a_1 + b1 + c\)       \(a_1 + c\)      

question id: PD13

Exercise 14 What is \(\partial_y \left[\strut a_0 + a_1 x + b_1 y + c x y \right]\)?

\(b_1 + cx\)       \(b_1\)       \(a_1 + b1 + c\)       \(b_1 + c\)      

question id: PD14

Exercise 15 What is \(\partial_x \partial_y \left[\strut a_0 + a_1 x + b_1 y + c x y \right]\)? (Usually we would write \(\partial_{xy}\) instead of \(\partial_x \partial_y\), but they amount to the same thing.)

\(c\)       \(a_1\)       \(b_1\)       \(0\)      

question id: PD15

Exercise 16 What is \(\partial_x \partial_x \left[\strut a_0 + a_1 x + b_1 y + c x y \right]\)? (Usually we would write \(\partial_{xx}\) instead of \(\partial_x \partial_x\), but they amount to the same thing.)

\(c\)       \(a_1\)       \(b_1\)       \(0\)      

question id: PD16

Exercise 17 What is \(\partial_x \partial_x \left[\strut a_0 + a_1 x + b_1 y + c x y + a_2 x^2 + b_2 y^2 \right]\)? (Usually we would write \(\partial_{xx}\) instead of \(\partial_x \partial_x\), but they amount to the same thing.)

\(2 a_2\)       \(a_2\)       \(c + a_2\)
      \(0\)      

question id: PD17

Exercise 18 What is \(\partial_y \partial_x \left[\strut a_0 + a_1 x + b_1 y + c x y + a_2 x^2 + b_2 y^2 \right]\)? (Usually we would write \(\partial_{yx}\) instead of \(\partial_y \partial_x\), but they amount to the same thing.)

\(c\)       \(2 a_2\)       \(2 b_2\)       \(0\)      

question id: PD18

Exercise 19 What is \(\partial_x \left[\strut A x^n y^m \right]\)?

\(A n x^{n-1} y^m\)       \(A n m x^{n-1} y^{m-1}\)       \(A m x^{n} y^{m-1}\)       \(A y^m\)      

question id: PD19

Exercise 20 What is \(\partial_y \left[\strut A x^n y^m \right]\)?

\(A n x^{n-1} y^m\)       \(A n m x^{n-1} y^{m-1}\)       \(A m x^{n} y^{m-1}\)       \(A m y^{m-1}\)      

question id: PD20

Exercise 21 What is \(\partial_{xy} \left[\strut A x^n y^m \right]\)?

\(A n x^{n-1} y^{m-1}\)       \(A n m x^{n-1} y^{m-1}\)
      \(A m x^{n} y^{m-1}\)       \(A m x^{n-1} y^{m-1}\)      

question id: PD21

Exercise 22 What is \(\partial_x \left[\strut f(x) + y\right]\)?

\(\partial_x f(x)\)       \(\partial_x f(x) + 1\)       \(\partial_x f(x) + y\)       \(0\)      

question id: PD22

Exercise 23 What is \(\partial_x \left[\strut f(x) + g(y)\right]\)?

\(\partial_x f(x)\)       \(\partial_x f(x) + \partial_x g(y)\)       \(\partial_x f(x) + \partial_y g(y)\)       \(0\)      

question id: PD23

Exercise 24 What is \(\partial_y \left[\strut f(x) + g(y)\right]\)?

\(\partial_x f(x)\)       \(\partial_x g(y)\)       \(\partial_y g(y)\)       0      

question id: PD24

Exercise 25 What is \(\partial_x \partial_y \left[\strut f(x) + g(y)\right]\)?

\(\partial_x f(x)\)       \(\partial_x \partial_y g(y)\)       \(\partial_y g(y)\)       0      

question id: PD25

Exercise 26 What is \(\partial_y \partial_y \left[\strut f(x) + g(y)\right]\)?

\(\partial_y g(y)\)       1       \(\partial_{yy} g(y)\)       0      

question id: PD26

Exercise 27 What is \(\partial_y f(x) g(y)\)?

\(\partial_y g(y)\)       \(f(x)\ \partial_{y} g(y)\)       0       \(g(y)\ \partial_y f(x) + f(x) \ \partial_y g(y)\)      

question id: PD27

Exercise 28 What is \(\partial_y h(x,y) g(y)\)?

\(\partial_y g(y)\)       \(g(y) \partial_y h(x, y)\)       0       $ g(y) _y h(x,y) + h(x,y) _y g(y)$      

question id: PD28

Exercise 29 What is \(\partial_x h(x,y) g(y)\)?

\(\partial_x h(x, y)\)       \(g(y)\ \partial_x h(x,y) + h(x,y)\ \partial_x g(y)\)       \(g(y) \partial_x h(x, y)\)       \(g(y) \partial_y h(x, y)\)      

question id: PD29

Exercise 30 What is \(\partial_{yx} h(x,y) g(y)\)?

\(\partial_{yx} h(x, y)\)

\(g(y) \partial_{yx} h(x,y) + h(x,y)\ \partial_y g(y)\)

\((\partial_y g(y)) \ (\partial_x h(x, y)) + g(y)\ (\partial_{yx} h(x, y))\)

\((\partial_x g(y))\ (\partial_x h(x, y)) + g(y) (\partial_{xx} h(x, y) )\)

question id: PD30

Exercise 31 What is the “with-respect-to” input in \(\partial_y xy\)?

\(x\)       \(y\)       \(1\)      

question id: PD31

Exercise 32 What is the “with-respect-to” input in \(\partial_x y\)?

\(x\)       \(y\)       \(1\)      

question id: PD32

Exercise 33 What is the “with-respect-to” input in \(\partial_t y\)?

\(t\)       \(y\)       \(1\)      

question id: PD33

Exercise 34
You have been hiking all day and have reached map coordinate (x=2, y=2). You are completely exhausted. Time for a break. You want to walk along the hill, without any change of elevation. Which compass direction should you head in to get started?

W or SE

SE but not NW

NW but not SE

NE or SW

question id: r2-21

No answers yet collected