Chap 15 Review

WebR Status

🟑 Loading...

Loading webR...

#| show_hints: true 1. Division can accommodate any two quantities, regardless of dimension. [correct] 2. c is a dimensionless quantity. [hint: c is dimensionless, but that’s not a complete explanation. For instance, a+c would not be dimensionally valid.] 3. You can only divide two quantities of the same dimension. [hint: That’s just wrong. Division is valid regardless of dimension.]

:::
::: {#exr-dim-02} 
Consider these quantities:<br>$a = 25$ ft <br>$b = 3$ hours<br>$c = 4$<br>$d = 1$ meter<br>$e = 2.718$<br> Is this combination dimensionally valid? $$\sqrt{a}$$ Why or why not?<!-- Dimensions -->

::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="Invalid. Y ... dimension." id="dim-02-1" w="29" name="dim-02" hint="Yes!" show_hints="TRUE"/>
  Invalid. You can't have a non-integer exponent on a dimension.
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Valid. It&#39; ...  simply 5." id="dim-02-2" w="32" name="dim-02" hint="You forgot about the &quot;feet&quot; unit. That&#39;s dimension L and there is no such thing as $L^{1/2}$." show_hints="TRUE"/>
  Valid. It's simply 5.
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Invalid. 2 ...  quantity." id="dim-02-3" w="19" name="dim-02" hint="25 feet is a perfectly ordinary quantity. The issue is with the $\sqrt{\ \ \ }$" show_hints="TRUE"/>
  Invalid. 25 feet is not a valid quantity.
  
</p>
<input type="radio" class="devoirs-mcq" name="dim-02" id="dim-02.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="dim-02-hintarea">question id: dim-02</small>
</div>
:::
:::

::: {#exr-dim-03} 
Consider these quantities:<br>$a = 25$ ft <br>$b = 3$ hours<br>$c = 4$<br>$d = 1$ meter<br>$e = 2.718$<br> Is this combination dimensionally valid? $$b^c$$ Why or why not?<!-- Dimensions -->




::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="Invalid. E ... t allowed." id="dim-03-1" w="32" name="dim-03" hint="Exponention is allowed, so long as the exponent is an integer (or if the operation results in an integer exponent)" show_hints="TRUE"/>
  Invalid. Exponentiation of a dimensionful quantity isn't allowed.
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Valid. Exp ... s allowed." id="dim-03-2" w="5" name="dim-03" hint="Bullseye!" show_hints="TRUE"/>
  Valid. Exponentiation by a dimensionless integer is always allowed.
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Invalid. I ... dimension." id="dim-03-3" w="32" name="dim-03" hint="Get used to such things. What matters is whether the construction follows the rules. You&#39;ll often encounter compound dimensions that seem crazy complicated. For instance, foot-pounds (L$^2$MT$^{-2}$) is a perfectly familiar unit to a mechanic." show_hints="TRUE"/>
  Invalid. I can't make any sense out of T$^4$ as a dimension.
  
</p>
<input type="radio" class="devoirs-mcq" name="dim-03" id="dim-03.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="dim-03-hintarea">question id: dim-03</small>
</div>
:::



:::

::: {#exr-dim-04} 
Consider these quantities:<br>$a = 25$ ft <br>$b = 3$ hours<br>$c = 4$<br>$d = 1$ meter<br>$e = 2.718$<br> Is this combination dimensionally valid? $$c^b$$ Why or why not?<!-- Dimensions -->




::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="Invalid. E ... t allowed." id="dim-04-1" w="8" name="dim-04" hint="Exponention is allowed, so long as the exponent is an integer (or if the operation results in an integer exponent)" show_hints="TRUE"/>
  Invalid. Exponentiation by a dimensionful quantity isn't allowed.
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Valid. Exp ... s allowed." id="dim-04-2" w="87" name="dim-04" hint="$b$ isn&#39;t a dimensionless integer; it&#39;s 3 hours!" show_hints="TRUE"/>
  Valid. Exponentiation by a dimensionless integer is always allowed.
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Valid. You ... rs like 4." id="dim-04-3" w="32" name="dim-04" hint="Sorry, but you can&#39;t add a dimensionless quantity to a dimensionful quantity, no can you raise a dimensionless quantity to a dimensionful power." show_hints="TRUE"/>
  Valid. You can do what you want with plain (dimensionless) numbers like 4.
  
</p>
<input type="radio" class="devoirs-mcq" name="dim-04" id="dim-04.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="dim-04-hintarea">question id: dim-04</small>
</div>
:::



:::
::: {#exr-dim-05} 
Consider these quantities:<br>$a = 25$ ft <br>$b = 3$ hours<br>$c = 4$<br>$d = 1$ meter<br>$e = 2.718$<br> Is this combination dimensionally valid? $$\sqrt[3]{a^2 d}$$ Why or why not?<!-- Dimensions -->




::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="Invalid. Y ... ger power." id="dim-05-1" w="32" name="dim-05" hint="You can always raise a dimensionful quantity to an integer power. And, if the result of raising to the non-integer power is to produce dimensions that have integer powers, that is valid, too." show_hints="TRUE"/>
  Invalid. You can't raise a dimensionful quantity to a non-integer power.
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Valid. $a^ ... $^3$ is L." id="dim-05-2" w="8" name="dim-05" hint="Spot on!" show_hints="TRUE"/>
  Valid. $a^2 d$ is a volume: L$^3$. The cube root of L$^3$ is L.
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Invalid. 2 ... by meters." id="dim-05-3" w="7" name="dim-05" hint="Why not? 625 square-feet meters is a volume. It has dimension L$^3$. Admittedly a strange unit, but no stranger than the &quot;acre-foot&quot; used to measure agricultural irrigation." show_hints="TRUE"/>
  Invalid. 25 feet squared is 625 square feet. It makes no sense to multiply square feet by meters.
  
</p>
<input type="radio" class="devoirs-mcq" name="dim-05" id="dim-05.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="dim-05-hintarea">question id: dim-05</small>
</div>
:::



:::

::: {#exr-dim-06} 
Consider these quantities:<br>$a = 25$ ft <br>$b = 3$ hours<br>$c = 4$<br>$d = 1$ meter<br>$e = 2.718$<br> Is this combination dimensionally valid? $$\exp(a d)$$ Why or why not? <!-- Dimensions -->




::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="Invalid. T ...  quantity." id="dim-06-1" w="41" name="dim-06" hint="$a d$ has dimension L$^2$ (with units of feet-meters)." show_hints="TRUE"/>
  Invalid. The input to $\exp()$ must be a dimensionless quantity.
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Valid. The ... f the $b$." id="dim-06-2" w="7" name="dim-06" hint="No it doesn&#39;t. $a d$ has dimension L$^2$." show_hints="TRUE"/>
  Valid. The $a$ cancels out the dimension of the $b$.
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Invalid. 2 ...  anything." id="dim-06-3" w="3" name="dim-06" hint="Yes it does. It&#39;s the area of a rectangle that is 25 feet long and one meter wide." show_hints="TRUE"/>
  Invalid. 25 foot-meters doesn't mean anything.
  
</p>
<input type="radio" class="devoirs-mcq" name="dim-06" id="dim-06.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="dim-06-hintarea">question id: dim-06</small>
</div>
:::



:::

::: {#exr-dim-07} 
Consider these quantities:<br>$a = 25$ ft <br>$b = 3$ hours<br>$c = 4$<br>$d = 1$ meter<br>$e = 2.718$<br> Is this combination dimensionally valid? $$\exp(c d)$$ Why or why not? <!-- Dimensions -->




::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="Invalid. T ...  quantity." id="dim-07-1" w="14" name="dim-07" hint="$c d$ has dimension L." show_hints="TRUE"/>
  Invalid. The input to $\exp()$ must be a dimensionless quantity.
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Valid. The ... l be L$^4$" id="dim-07-2" w="3" name="dim-07" hint="This would be right for the combination $d^c$, but $\exp(c d)$ is completely different." show_hints="TRUE"/>
  Valid. The dimension will be L$^4$
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Invalid. $ ... mension L." id="dim-07-3" w="32" name="dim-07" hint="The dimension of $c d$ is indeed L, but you can&#39;t have an argument to $\exp()$ that is dimensionful." show_hints="TRUE"/>
  Invalid. $c d$ has dimension L.
  
</p>
<input type="radio" class="devoirs-mcq" name="dim-07" id="dim-07.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="dim-07-hintarea">question id: dim-07</small>
</div>
:::



:::

::: {#exr-dim-08} 
Consider these quantities:<br>$a = 25$ ft <br>$b = 3$ hours<br>$c = 4$<br>$d = 1$ meter<br>$e = 2.718$<br> Is this combination dimensionally valid? $$\exp(c/d)$$ Why or why not? <!-- Dimensions -->




::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="Invalid. T ...  quantity." id="dim-08-1" w="8" name="dim-08" hint="$c / d$ is not dimensionless." show_hints="TRUE"/>
  Invalid. The input to $\exp()$ must be a dimensionless quantity.
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Valid. The ... n of $1/d$" id="dim-08-2" w="7" name="dim-08" hint="This would be right for the combination $d^c$, but $\exp(c d)$ is completely different." show_hints="TRUE"/>
  Valid. The L dimension of $c$ is cancelled out by the L$^{-1}$ dimension of $1/d$
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Invalid. $ ...  L$^{-1}$." id="dim-08-3" w="19" name="dim-08" hint="Check your arithmetic!" show_hints="TRUE"/>
  Invalid. $c / d$ has dimension L$^{-1}$.
  
</p>
<input type="radio" class="devoirs-mcq" name="dim-08" id="dim-08.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="dim-08-hintarea">question id: dim-08</small>
</div>
:::



:::

::: {#exr-dim-09} 
Here are some physical quantities and their dimension:<br>[Force] = MLT$^{-2}$<br>[Distance] = L<br>[Area] = L$^2$<br>[Velocity] = L T$^{-1}$<br>[Acceleration] = L T$^{-2}$<br>[Momentum] = M L T$^{-1}$<br><br> Given that [Force] = [Pressure][Area], what is the dimension of Pressure? <!-- Dimensions -->




::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="M L$^{-1}$ T$^{-2}$" id="dim-09-1" w="5" name="dim-09" hint="Right!" show_hints="TRUE"/>
  M L$^{-1}$ T$^{-2}$
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="M L$^{1}$ T$^{-2}$" id="dim-09-2" w="3" name="dim-09" hint="Not quite right." show_hints="TRUE"/>
  M L$^{1}$ T$^{-2}$
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="M L$^{-2}$ T$^{-1}$" id="dim-09-3" w="7" name="dim-09" hint="Untrue!" show_hints="TRUE"/>
  M L$^{-2}$ T$^{-1}$
  
</p>
<input type="radio" class="devoirs-mcq" name="dim-09" id="dim-09.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="dim-09-hintarea">question id: dim-09</small>
</div>
:::



:::


::: {#exr-drill-Dimensions-9}
For the following few problems, keep in mind these physical quantities and their dimension:

- [Force] = MLT^-2^
- [Distance] = L
- [Area] = L^2^
- [Velocity] = L T^-1^
- [Acceleration] = L T^-2^<br>
- [Momentum] = M L T^-1^


1. Given that [Force] = [Pressure][Area], what is the dimension of Pressure? 




::: {.cell show_hints='true' inline='true'}
<input type="radio" class="devoirs-mcq" value="M L$^{-1}$ T$^{-2}$" id="drill-Dimensions-9-1" w="8" name="drill-Dimensions-9" hint="Right on the nose!" show_hints="TRUE"/>
M L$^{-1}$ T$^{-2}$
     
<input type="radio" class="devoirs-mcq" value="M L$^{1}$ T$^{-2}$ " id="drill-Dimensions-9-2" w="23" name="drill-Dimensions-9" hint="Untrue!" show_hints="TRUE"/>
M L$^{1}$ T$^{-2}$ 
     
<input type="radio" class="devoirs-mcq" value="M L$^{-2}$ ...  T$^{-1}$ " id="drill-Dimensions-9-3" w="19" name="drill-Dimensions-9" hint="Not so!" show_hints="TRUE"/>
M L$^{-2}$ T$^{-1}$ 
     
<input type="radio" class="devoirs-mcq" name="drill-Dimensions-9" id="drill-Dimensions-9.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="drill-Dimensions-9-hintarea">question id: drill-Dimensions-9</small>
</div>
:::




2. Which one of the following statements is true? 




::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="Momentum = ... * Velocity" id="drill-Dimensions-10-1" w="18" name="drill-Dimensions-10" hint="Right!" show_hints="TRUE"/>
  Momentum = Mass * Velocity
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Velocity = ...  Momentum " id="drill-Dimensions-10-2" w="32" name="drill-Dimensions-10" hint="Not so!" show_hints="TRUE"/>
  Velocity = Mass / Momentum 
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Momentum = ... celeration" id="drill-Dimensions-10-3" w="32" name="drill-Dimensions-10" hint="Mass * Acceleration is Force" show_hints="TRUE"/>
  Momentum = Mass * Acceleration
  
</p>
<input type="radio" class="devoirs-mcq" name="drill-Dimensions-10" id="drill-Dimensions-10.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="drill-Dimensions-10-hintarea">question id: drill-Dimensions-10</small>
</div>
:::




3. Which one of the following statements is true? 




::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="Volume = D ... nce * Area" id="drill-Dimensions-11-1" w="41" name="drill-Dimensions-11" hint="Bingo!" show_hints="TRUE"/>
  Volume = Distance * Area
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Area = Dis ...  / Volume " id="drill-Dimensions-11-2" w="3" name="drill-Dimensions-11" hint="Not so!" show_hints="TRUE"/>
  Area = Distance / Volume 
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Force = Mo ... eleration " id="drill-Dimensions-11-3" w="32" name="drill-Dimensions-11" hint="Wrong." show_hints="TRUE"/>
  Force = Momentum / Acceleration 
  
</p>
<input type="radio" class="devoirs-mcq" name="drill-Dimensions-11" id="drill-Dimensions-11.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="drill-Dimensions-11-hintarea">question id: drill-Dimensions-11</small>
</div>
:::




4. Which of the following is true? 




::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="Energy = D ... ce * Force" id="drill-Dimensions-12-1" w="5" name="drill-Dimensions-12" hint="A hit!" show_hints="TRUE"/>
  Energy = Distance * Force
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Force = En ... gy / Mass " id="drill-Dimensions-12-2" w="7" name="drill-Dimensions-12" hint="Incorrect choice." show_hints="TRUE"/>
  Force = Energy / Mass 
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Energy = M ... eleration " id="drill-Dimensions-12-3" w="19" name="drill-Dimensions-12" hint="Not quite right." show_hints="TRUE"/>
  Energy = Momentum * Acceleration 
  
</p>
<input type="radio" class="devoirs-mcq" name="drill-Dimensions-12" id="drill-Dimensions-12.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="drill-Dimensions-12-hintarea">question id: drill-Dimensions-12</small>
</div>
:::




5. Which of the following is true? 




::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="Length = V ... celeration" id="drill-Dimensions-13-1" w="8" name="drill-Dimensions-13" hint="You&#39;ve got it!" show_hints="TRUE"/>
  Length = Velocity / Acceleration
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Length = F ...  Momentum " id="drill-Dimensions-13-2" w="32" name="drill-Dimensions-13" hint="Boo!" show_hints="TRUE"/>
  Length = Force / Momentum 
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Area = Vel ... eleration " id="drill-Dimensions-13-3" w="32" name="drill-Dimensions-13" hint="Not so!" show_hints="TRUE"/>
  Area = Velocity * Acceleration 
  
</p>
<input type="radio" class="devoirs-mcq" name="drill-Dimensions-13" id="drill-Dimensions-13.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="drill-Dimensions-13-hintarea">question id: drill-Dimensions-13</small>
</div>
:::




6. Which of the following is true? 




::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="Time = For ... / Momentum" id="drill-Dimensions-14-1" w="20" name="drill-Dimensions-14" hint="Spot on!" show_hints="TRUE"/>
  Time = Force / Momentum
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Length = F ...  Momentum " id="drill-Dimensions-14-2" w="23" name="drill-Dimensions-14" hint="You might think so, but ..." show_hints="TRUE"/>
  Length = Force / Momentum 
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Area = For ...  Momentum " id="drill-Dimensions-14-3" w="3" name="drill-Dimensions-14" hint="No." show_hints="TRUE"/>
  Area = Force / Momentum 
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="Mass = For ...  Momentum " id="drill-Dimensions-14-4" w="23" name="drill-Dimensions-14" hint="Not quite." show_hints="TRUE"/>
  Mass = Force / Momentum 
  
</p>
<input type="radio" class="devoirs-mcq" name="drill-Dimensions-14" id="drill-Dimensions-14.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="drill-Dimensions-14-hintarea">question id: drill-Dimensions-14</small>
</div>
:::




7. What kind of thing is $$\sqrt[3]{(\text{4in})(\text{2 ft})(\text{1 mile})}\  ?$$ 




::: {.cell show_hints='true' inline='true'}
<input type="radio" class="devoirs-mcq" value="Length" id="drill-Dimensions-15-1" w="5" name="drill-Dimensions-15" hint="Nice." show_hints="TRUE"/>
Length
     
<input type="radio" class="devoirs-mcq" value="Area " id="drill-Dimensions-15-2" w="87" name="drill-Dimensions-15" hint="Untrue!" show_hints="TRUE"/>
Area 
     
<input type="radio" class="devoirs-mcq" value="Volume " id="drill-Dimensions-15-3" w="87" name="drill-Dimensions-15" hint="You&#39;re wrong here." show_hints="TRUE"/>
Volume 
     
<input type="radio" class="devoirs-mcq" value="It is meaningless " id="drill-Dimensions-15-4" w="19" name="drill-Dimensions-15" hint="Nope." show_hints="TRUE"/>
It is meaningless 
     
<input type="radio" class="devoirs-mcq" name="drill-Dimensions-15" id="drill-Dimensions-15.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="drill-Dimensions-15-hintarea">question id: drill-Dimensions-15</small>
</div>
:::




8. What kind of thing is $$\sin(\pi\ \text{seconds})\  ?$$ 




::: {.cell show_hints='true' inline='true'}
<input type="radio" class="devoirs-mcq" value="Length " id="drill-Dimensions-16-1" w="32" name="drill-Dimensions-16" hint="Sorry!" show_hints="TRUE"/>
Length 
     
<input type="radio" class="devoirs-mcq" value="1 / Length " id="drill-Dimensions-16-2" w="3" name="drill-Dimensions-16" hint="Sorry!" show_hints="TRUE"/>
1 / Length 
     
<input type="radio" class="devoirs-mcq" value="The number 0 " id="drill-Dimensions-16-3" w="19" name="drill-Dimensions-16" hint="This is wide of the mark." show_hints="TRUE"/>
The number 0 
     
<input type="radio" class="devoirs-mcq" value="It is meaningless" id="drill-Dimensions-16-4" w="14" name="drill-Dimensions-16" hint="right-o The input to the sinusoid (and other trig functions) must be dimensionless" show_hints="TRUE"/>
It is meaningless
     
<input type="radio" class="devoirs-mcq" name="drill-Dimensions-16" id="drill-Dimensions-16.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="drill-Dimensions-16-hintarea">question id: drill-Dimensions-16</small>
</div>
:::




10. If $t$ is measured in seconds and $A$ is measured in feet, what will be the dimension of $A \sin(2\pi t/P)$ when $P$ is two hours? 




::: {.cell show_hints='true' inline='true'}
<input type="radio" class="devoirs-mcq" value="L" id="drill-Dimensions-17-1" w="16" name="drill-Dimensions-17" hint="Good job!" show_hints="TRUE"/>
L
     
<input type="radio" class="devoirs-mcq" value="T" id="drill-Dimensions-17-2" w="23" name="drill-Dimensions-17" hint="Remember, the output of $\sin()$ is dimensionless." show_hints="TRUE"/>
T
     
<input type="radio" class="devoirs-mcq" value="L/T" id="drill-Dimensions-17-3" w="3" name="drill-Dimensions-17" hint="Remember, the output of $\sin()$ is dimensionless." show_hints="TRUE"/>
L/T
     
<input type="radio" class="devoirs-mcq" name="drill-Dimensions-17" id="drill-Dimensions-17.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="drill-Dimensions-17-hintarea">question id: drill-Dimensions-17</small>
</div>
:::




11. Engineers often prefer to describe sinusoids in terms of their *frequency* $\omega$, writing the function as $\sin(2 \pi \omega t)$, where $t$ is time.<br><br> What is the dimension of $\omega$? 




::: {.cell show_hints='true' inline='true'}
<input type="radio" class="devoirs-mcq" value="T$^{-1}$" id="drill-Dimensions-18-1" w="29" name="drill-Dimensions-18" hint="Nice. A common unit of frequency is Hertz (Hz), sometimes called &quot;cycles per second.&quot;" show_hints="TRUE"/>
T$^{-1}$
     
<input type="radio" class="devoirs-mcq" value="T" id="drill-Dimensions-18-2" w="19" name="drill-Dimensions-18" hint="This would mean the input to $\sin()$ has dimension T$^2$. But $\sin()$ only makes sense for a dimensionless input." show_hints="TRUE"/>
T
     
<input type="radio" class="devoirs-mcq" value="T$^2$" id="drill-Dimensions-18-3" w="87" name="drill-Dimensions-18" hint="This would mean the input to $\sin()$ has dimension T$^3$. But $\sin()$ only makes sense for a dimensionless input." show_hints="TRUE"/>
T$^2$
     
<input type="radio" class="devoirs-mcq" name="drill-Dimensions-18" id="drill-Dimensions-18.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="drill-Dimensions-18-hintarea">question id: drill-Dimensions-18</small>
</div>
:::




12. Suppose $t$ is measured in hours and $x$ in yards. What will be the dimension of $P$ in $$\sin(2\pi t x/P)\ ?$$ 




::: {.cell show_hints='true'}
<p>
  <input type="radio" class="devoirs-mcq" value="There is n ...  $\sin()$ " id="drill-Dimensions-19-1" w="3" name="drill-Dimensions-19" hint="Untrue!" show_hints="TRUE"/>
  There is no such $P$ that will make a valid input to $\sin()$ 
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="L T" id="drill-Dimensions-19-2" w="20" name="drill-Dimensions-19" hint="Yes." show_hints="TRUE"/>
  L T
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="L / T " id="drill-Dimensions-19-3" w="3" name="drill-Dimensions-19" hint="Not quite." show_hints="TRUE"/>
  L / T 
  
</p>
<p>
  <input type="radio" class="devoirs-mcq" value="T / L " id="drill-Dimensions-19-4" w="3" name="drill-Dimensions-19" hint="This is wide of the mark." show_hints="TRUE"/>
  T / L 
  
</p>
<input type="radio" class="devoirs-mcq" name="drill-Dimensions-19" id="drill-Dimensions-19.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="drill-Dimensions-19-hintarea">question id: drill-Dimensions-19</small>
</div>
:::



:::

::: {#exr-drill-M04-24}

1. In mathematics/trigonometry, what is the value of $\sin(180^\circ)$.




::: {.cell show_hints='true' inline='true'}
<input type="radio" class="devoirs-mcq" value="0" id="drill-04-24-1-1" w="35" name="drill-04-24-1" hint="Right!" show_hints="TRUE"/>
0
     
<input type="radio" class="devoirs-mcq" value="$\sqrt{2}$" id="drill-04-24-1-2" w="3" name="drill-04-24-1" hint="Impossible. The output of the sinusoid is always within the range -1 to 1. $\sqrt(2) \gt 1$." show_hints="TRUE"/>
$\sqrt{2}$
     
<input type="radio" class="devoirs-mcq" value="1" id="drill-04-24-1-3" w="3" name="drill-04-24-1" hint="Better luck next time." show_hints="TRUE"/>
1
     
<input type="radio" class="devoirs-mcq" value="-1" id="drill-04-24-1-4" w="7" name="drill-04-24-1" hint="Not quite." show_hints="TRUE"/>
-1
     
<input type="radio" class="devoirs-mcq" name="drill-04-24-1" id="drill-04-24-1.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="drill-04-24-1-hintarea">question id: drill-04-24-1</small>
</div>
:::



:::

2. In R/mosaic, what is the value of `sin(180)`? 




::: {.cell show_hints='true' inline='true'}
<input type="radio" class="devoirs-mcq" value="-0.80" id="drill-M04-24-2-1" w="8" name="drill-M04-24-2" hint="Correct The argument to trigonometric functions is interpreted by R to be in **radians**." show_hints="TRUE"/>
-0.80
     
<input type="radio" class="devoirs-mcq" value="0" id="drill-M04-24-2-2" w="19" name="drill-M04-24-2" hint="This would be right if sine interpreted its argument in *degrees*. But arguments to the trigonometric functions in R and most other languages are in **radians**.&quot; $\sin(\pi) = 0$." show_hints="TRUE"/>
0
     
<input type="radio" class="devoirs-mcq" value="0.80" id="drill-M04-24-2-3" w="3" name="drill-M04-24-2" hint="You&#39;ve got the sign incorrect." show_hints="TRUE"/>
0.80
     
<input type="radio" class="devoirs-mcq" value="1" id="drill-M04-24-2-4" w="3" name="drill-M04-24-2" hint="The argument to `sin()` is in radians." show_hints="TRUE"/>
1
     
<input type="radio" class="devoirs-mcq" name="drill-M04-24-2" id="drill-M04-24-2.null" style="display: none;" w="skipped" checked=""/>
<div class="hintarea">
  <small style="color: grey;" id="drill-M04-24-2-hintarea">question id: drill-M04-24-2</small>
</div>
:::



:::




<span id="devoirs-docID" style="display: none;">15-review.rmarkdown</span>
<button onclick="devoirsSubmit()">Collect your answers</button>
<div id="devoirs_summary">No answers yet collected</div>





::: {.cell}
::: {.cell-output-display}

```{=html}
<script type='text/javascript'>
 console.log("In devoirs.js")

function devoirsCollectEssays() {
  var essay_answers = [];
  var items = document.getElementsByClassName("devoirs-text");
  for (i = 0; i < items.length; i++) {
    //console.log("text entry" + i + "being handled");
    essay_answers[i] = {itemid: items[i].id, contents: items[i].value}
  }

  return essay_answers;
}

function devoirsGetDocID() {
  return document.getElementById("devoirs-docID").innerHTML
}

function devoirsCollectMC() {
    let mc_answers = [] // Hold the information
    var ele = document.getElementsByClassName("devoirs-mcq");
    var count = 0;
    for (i = 0; i < ele.length; i++) {
        if (ele[i].checked) {
          //console.log("Entering conditional.");
          let checked_one = ele[i];
          mc_answers[count++] = {itemid: checked_one.id, w: checked_one.getAttribute("w"), contents: checked_one.text};
        }
    }
    return mc_answers;
}

console.log("About to define WebR")

function devoirsCollectWebR() {
  var chunk_contents = []; // placeholder for collecting webr items
  if (typeof qwebrCellDetails == "undefined") {
    // There aren't any webr chunks
    return chunk_contents;
  }
  var chunks = qwebrCellDetails;
  for (i = 0; i < chunks.length; i++) {
    chunk_contents[i] = {itemid: chunks[i].options["label"], contents: chunks[i].code};
  }

  return chunk_contents;
}

console.log("About to define devoirsSubmit")

function devoirsSubmit() {
  console.log("About to collect history")

  // check if there is any sign of a webr entry
  // If not, don't try to collect webr entries
  if (typeof qwebrRCommandHistory === 'undefined') {
    items = {docid: devoirsGetDocID(), MC: devoirsCollectMC(), Essays: devoirsCollectEssays(), WebR: {}, R: {}}
  } else {
    console.log("Getting R commands.")
    var Rhistory = qwebrRCommandHistory.map((x) => x.replace(/Ran code in (.*) at (.*[AP]M).{5}(.*)/, "[chunk: $1, time: $2, code: $3]"))

    items = {docid: devoirsGetDocID(), MC: devoirsCollectMC(), Essays: devoirsCollectEssays(), WebR: devoirsCollectWebR(), R: Rhistory}
  }

  navigator.clipboard.writeText(JSON.stringify(items));

  // summarize what's being collected
  var my_summary = "Answers copied to clipboard. Fixed choice: " + items.MC.length + " Essays: " + items.Essays.length + " WebR chunks: " + items.WebR.length

  document.getElementById("devoirs_summary").innerHTML = my_summary;
}

console.log("Read devoirsSubmit()")

// Hint handling in Multiple choice

// Still have to add an on/off switch from options

function devoirs_setup_hintarea() {
  answers = document.getElementsByClassName("devoirs-mcq")
  for (i=0; i<answers.length; i++) answers[i].addEventListener('click', function(e){document.getElementById(e.target.name + "-hintarea").innerHTML = e.target.getAttribute("hint")})
}

 window.addEventListener("load", function() {
  answers = document.getElementsByClassName("devoirs-mcq")
  for (i=0; i<answers.length; i++) {
    if (answers[i].getAttribute("show_hints") == "TRUE") {
        answers[i].addEventListener('click', function(e){
        document.getElementById(e.target.name + "-hintarea").innerText = e.target.getAttribute("hint")
      })

    }
  }
})

console.log("Added hint summary.") 
</script>

::: :::

Γ—

R History Command Contents

Download R History File