A "skeleton" is a data frame containing "nicely spaced" values for the explanatory variables in a model.
Arguments
- mod
A fitted model or a tilde expression describing a model structure, e.g.
outcome ~ vara+varb
.- data
a data frame. Relevant only when
mod
is a tilde expression- ncont
minimum number of levels at which to represent continuous variables. (More levels may be added to "prettify" the choices. See
pretty()
.)- nfirstcont
Like
ncont
, but for the first explanatory variable if it is categorical. This variable is mapped to the horizontal axis and so should have many levels to produce a smooth graph. (Default: 50)
Examples
Model <- FEV |> model_train(FEV ~ sex + age + height)
Model |> model_skeleton()
#> sex age height
#> 1 F 0 40
#> 2 M 0 40
#> 3 F 10 40
#> 4 M 10 40
#> 5 F 20 40
#> 6 M 20 40
#> 7 F 0 50
#> 8 M 0 50
#> 9 F 10 50
#> 10 M 10 50
#> 11 F 20 50
#> 12 M 20 50
#> 13 F 0 60
#> 14 M 0 60
#> 15 F 10 60
#> 16 M 10 60
#> 17 F 20 60
#> 18 M 20 60
#> 19 F 0 70
#> 20 M 0 70
#> 21 F 10 70
#> 22 M 10 70
#> 23 F 20 70
#> 24 M 20 70
#> 25 F 0 80
#> 26 M 0 80
#> 27 F 10 80
#> 28 M 10 80
#> 29 F 20 80
#> 30 M 20 80