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Time Series Analysis of Complex Dynamics inPhysiology and MedicineLeon Glass and Daniel KaplanDepartment of PhysiologyMcGill University3655 Drummond StreetMontr�eal, Qu�ebecCanada H3G 1Y6November 10, 19921 IntroductionA hallmark of living organisms is that they are not constant in time. Subcellular,cellular, and supercellular processes such as the cycle of cell growth and divi-sion, voltage uctuations in excitable cell membranes, respiration, bood pressureregulation, and the sleep-wake cycle provide spectacular examples of complexrhythms. Interest in these complex uctuations has been stimulated in recentyears by the widespread recognition that deterministic dynamical systems candisplay chaotic dynamics: aperiodic rhythms sensitive to the initial condition[11, 55, 13, 23, 1, 47]. Although analyses of theoretical models and experimentsin controlled situations have provided good evidence that chaos can sometimesbe found in biological systems [29, 2, 34, 10, 30], chaos itself serves more oftenas a motivating idea for research than an unequivocal scienti�c �nding.In this article we will provide a brief critical summary of time series analysisin biology with emphasis on physiology and medicine. We will �rst brieysummarize standard methods of time series analysis and indicate how thesehave been applied. Then we will indicate some of the ways in which conceptsfrom nonlinear dynamics are being applied. Since our strongest interest is inhuman physiology, most examples will be drawn from this area. However, timeseries analysis appears in so many di�erent ways in various �elds and sub�eldsthat we do not attempt a comprehensive review, but give illustrative examples.We also do not discuss the development of theoretical models for biologicalsystems since other sources provide detailed information about these areas [23].1



2 Standard methods of time series analysisThe most basic sort of time series analysis is carried out by the human eye, oftenassisted with calipers to measure distances on a paper chart (corresponding totime intervals in the original data). This is not as primitive as it sounds. Thehuman eye is an excellent pattern recognition device and is capable of carryingout the sophisticated analyses needed to classify time series. For example, in the�eld of electrocardiography, the interpretation of even exceedingly complex elec-trocardiograms (ECGs) as carried out, for example, with virtuousity by Pickand Langendorf [63], requires nothing more than application of several basicconcepts in cardiology combined with measurement of timing of the occurrenceof beats on comparatively short records. Interpretation of electroencephalo-grams (EEGs) is carried out in similar fashion by skilled clinicians who havelearned how to interpret the frequency, amplitude and morphology of recordingsof electrical activity from di�erent scalp locations [61]. This is su�cient for theidenti�cation of a great number of di�erent clinical disorders.Computer analysis of time series can provide routine diagnosis, such as read-ing ECGs or EEGs, or can carrry out tasks such as the detection of heart beats(or the lack thereof) in implantable pacemakers or de�brillators. Most medicalinstrumentation involves signal processing of some sort.In research, quantitative analysis of physiological time series starts (andoften ends) with an analysis of the mean and standard deviation. In some cases,these simple statistics can provide information of physiological importance. Forexample, the mean heart rate (over 10s of seconds) can be used to indicate alevel of exertion, and a low standard deviation of heart rate has been shown to beassociated with pathology [46]. In respiration, the frequency and the durationof the inspiratory and expiratory phases change with age and are di�erent indi�erent species [18, 58].The standard deviation by itself often does not provide an adequate charac-terization of uctuations in physiological systems. For the purpose of character-izing uctuations, the power-spectrum and autocorrelation function, and trans-fer functions, have successfully been applied. These techniques were introducedto physiology by skilled workers with a background in engineering and have seensigni�cant applications to physiology over the past 30 years. Power spectra andallied techniques have been used in various �elds in which the frequencies ofoscillations are believed to have functional or clinical signi�cance such as heartrate variability [45, 4], tremor [6], electroencephalography [50, 56]. Perhaps be-cause of the systems engineering background of most workers studying spectralanalysis, di�erent frequencies are usually associated with di�erent mechanismsthat lead to superimposed oscillations.2



3 Time series analyses using methods intro-duced from nonlinear dynamicsRecognition of the importance of nonlinear phenomena in physiological systemshas a long history | its beginnings are perhaps represented by the work of vander Pol and van der Mark [76] in the early part of the century. In Nobel Prizewinning work, Hodgkin and Huxley [35] related the dynamics of excitable cellmembranes to a system of coupled nonlinear di�erential equations.The recent realization that nonlinear dynamical systems can display de-terministic chaos has had a strong impact on research in time series analysisin physiology and medicine [23]. Whereas a generation ago, researchers weredelighted to conjecture that a complex time series from a neuron was well-described in terms of random walks [20], there is now a strong inclination tointerpret physiological time series in terms of chaos. Often, this interpretationinvolves the use of time series analysis techniques motivated by chaotic dynam-ical systems. In this section we briey review several of the main concepts innonlinear dynamics that have been applied to time series analysis.BifurcationsOne of the most basic concepts in nonlinear dynamics is bifurcation. A bifurca-tion is a change in the qualitative features of the dynamics that arises as someparameter describing the systems changes. Bifurcations may be associated withthe onset or the annihilation of oscillations, a sudden change in the period ofan oscillation, or the onset or annihilation of chaotic dynamics.Figure 1 shows an example of bifurcations in a theoretical model of a multi-looped feedback control system represented as a delay di�erential equation [53].Increasing the gain of the control function leads to a cascade of period-doublingbifurcations and, eventually, an aperiodic chaotic rhythm. Examples such asthis in model systems abound. It is rarer to �nd good examples of bifurca-tions in experimental systems. One experimental system that does show similarphenomena is periodically stimulated chick heart cells. Figure 2 shows a seriesof traces displaying period-doubling bifurcations and also an aperiodic chaoticrhythm [29].The occurrence of complex bifurcations is well known in medicine. For exam-ple, in cardiology complex changes of rhythm associated with various arrhyth-mias are well documented and in some cases may be associated with bifurcationsin nonlinear dynamical equations [22]. For example, the appearance of alternansrhythms in which there is a beat to beat alternation of ECG waveforms may insome cases be associated with period doubling bifurcations [28, 73].Time series analysis techniques to detect and characterize bifurcations havenot been widely developed. Smith et al. [73] have proposed an FFT-basedstatistic for quantifying alternation and a method for detecting and quantifying3



Figure 1. Time series generated from equations modeling a multi-loop negativefeedback system showing bifurcations that occur as the gain of feedback is increased.(Reproduced from [53].)(a) Periodic orbit(b) Period-2 orbit(c) Period-4 orbit(d) Chaotic orbit 4



Figure 2. Phase plane embedding (a) and Poincare map (b) for the time series inFig. 1d. Successive values, designated Pi, of P (t� 2:01) for crossing P (t) = 0:55with dP=dt > 0 are determined from the data in (a). (Reproduced from [53].)
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alternation that uses an embedding-space formulation is given by Kaplan [41].In many circumstances, clear examples of bifurcations are di�cult to documentand a variety of additional measures have been to developed to characterizecomplex time series.Dynamical representations of time seriesAlthough it is most common to plot time series as a function of time a variety ofother methods suggested by nonlinear dynamics provide powerful insights intodynamics in some circumstances, as illustrated in Figures 1 and 2.One technique, phase plane embedding, involves plotting x(t + � ) vs. x(t),giving a trajectory of the time space. Plots of a variable as a function of itsdelayed value were �rst used in theoretical studies of chaos in physiological sys-tems modeled by delay di�erential equations [21], and this technique has sincebeen used widely for systems in which only one variable is easily measured [69].Embeddings of a time series in higher dimensional phase spaces by plotting thecurrent value as a function of several time lagged values can be easily imple-mented for computational purposes.An example of a phase plane embedding for the time series in Fig. 1d isshown in Fig. 2a. In this plot, the trajectory is well con�ned in a limitedregion of phase space. Further insight into the dynamics in this example canbe obtained by examining the ow on a cross-section to the trajectory of theow. Successive returns to a cross-section to the ow are plotted in Fig. 2b.The points fall approximately on a one-dimensional single humped curve knownto give rise to chaotic dynamics. The map, which gives successive returns tothe cross section is usually called the return map or Poincar�e map. A recentexample in which an unstable cardiac preparation is perturbed and stabilizedby feedback calculated from a Poincar�e map is described in [52].In cases where analysis of the time series suggests a one-dimensional map,it may be possible to derive a form for the map on a theoretical analysis of theunderlying mathematical problem. An example is provided by the periodicallystimulated heart cell aggregates, Fig. 4. Theoretical analysis [29, 30] of thee�ects of periodic stimulation of a limit cycle oscillation, show that (i) if thereis rapid relaxation to the limit cycle and (ii) if the stimulus does not alter theproperties of the oscillator then a plot of successive phases of stimulus in thelimit cycle follows a one-dimensional map. A map derived from the time seriesfor Fig. 2a once again falls on a one-dimensional single humped curve.In Figs. 3 and 4, the time embedding techniques help to identify the un-derlying deterministic dynamics governing the time evolution. Although suchtechniques can be readily tested on data sets, there is no guarantee that sim-ple one (or higher) dimensional maps will be identi�ed. To give an idea ofthe di�culties that arise in practical situations consider data set B. Figure 5shows several two-dimensional embeddings in the data in which the heart rateis displayed as a function of its time lagged value. Panels 5 (a),(b), and (c)6



Figure 3. Time series showing the e�ects of periodic stimulation (sharp spikes) onspontaneously beating aggregates of embryonic chick heart cells. (Reproduced from[29] and [30].)(a) Transition from 1:1 phase locking to 2:2 phase locking.(b) 4:4 phase locking.(c) Irregular dynamics reecting deterministic chaos.(d) Return map showing the phase of stimulus i + 1 as a function of stimulus i.7
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Figure 5. Embedding plots of the heart rate time series from Data Set B, withdi�erent embedding lag � .(a) � = 0:5 secs.(b) � = 5 secs.(c) � = 15 secs.(d) � = 5 secs (as in (b)), but now consecutive points have been connected. Thisshows that the �lament structures near the periphery in (b) are the result ofsingle passes of the trajectory through sparsely populated areas.8



show values stepping through the data set at 0.5 sec increments, and panel 5(d)shows the embedded trajectory based on Fig. 5(b). The ellipsoidal structurein 5(a),(b) simply reects the autocorrelation of the heart rate for small timedelays | even random numbers that have been low-pass �ltered to producesuch correlations will show this structure. Depending on the embedding delay� , other forms of structure can appear in the embedding. Often, this structureis consistent with passing random white noise through a linear coloring �lter.None of these plots give an indication of structure present in the data thatwould indicate a deterministic origin. Of course, one cannot exclude the possi-bility that some higher dimensional embedding would disentangle the spaghettimess in Fig. 5(d). A major problem is to decide what is a proper embeddingdimension. The \false neighbors" technique proposed by Kennel et al. [44]addresses this issue.Two-dimensional representations of physiological variables have provided auseful tool for plotting physiological data of periodic rhythms. For example,phase plane plots of the volume and ow during a breath provide a representa-tion of the respiratory cycle [59]. In motor control, there have been descriptionsof limb position using phase plane plots [3].Dimension and Lyapunov NumbersA number of measures of complex time series have been developed based onconcepts from nonlinear dynamics. Although such measures have well-de�nedmeanings in idealized situations, in practice, the complex nature of physiologicaltime series often makes interpretation of these measures di�cult if not impossi-ble. We briey review several methods currently being employed. An excellent,detailed review of these techniques along with the pitfalls is [27].The dimension [17, 26] gives a statistical measure of the geometry of thecloud of points. In deterministic chaotic systems the dimension is frequently(but not always!) a fractional number and is independent of the embedding di-mension m when m is large enough. In practice, with physiological data, thereare many di�culties involved in the analysis of a system using dimension. Someof the issues involved include the stationarity of the dynamics, noise, the sam-pling rate of the time series, the need to use �nite length scales imposed by the�nite size of data sets, and selecting appropriate convergence criteria to assertthe existence of a well-de�ned dimension. To deal with some of these prob-lems, computation of the local or \pointwise" dimension has been suggested.[54, 33, 19]. For example, Skinner et al. have proposed a technique in whicha separate estimate of the correlation dimension is calculated for each point inthe time series, based on the several nearest neighbors in the embedding space[72, 49].Another set of statistics in wide use are Lyapunov exponents. These measurethe average local rate of divergence of neighboring trajectories in phase-spaceembeddings [77]. If a system is known to be deterministic, a positive Lyapunov9
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Figure 6.(a) A surface electrocardiogram (ECG). The tall, upward spikes (the \QRS com-plexes") correspond to ventricular activation, the more rounded downwardexcursions correspond to ventricular relaxation (the \T-wave").(b) A embedding of the ECG signal. m = 2, � = 50msecs.(c) The distance between two segments in the embedded ECG trajectory (withm = 3, � = 50msecs). Initially the segments are quite close, but are rapidlyseparated during the QRS complexes. Lyapunov exponent calculations thatassume that trajectories will separate in an approximately exponential fashionmay be mislead by data like this.
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number can be taken as a de�nition of a chaotic system. There are now avariety of algorithms for estimating Lyapunov exponents from time series. Anearly algorithm in wide use developed by Wolf and colleagues [77] estimatesthe divergence of pairs of neighboring trajectories. Unfortunately the Wolfalgorithm has some serious limitations in the analysis of biological data, butthis is still not always recognized [14]. One problem arises when there are largederivatives of approximately periodic functions. An example of an ECG andits embedding in 2 dimensions is shown in Fig. 6. Figure 6(c) is a plot of thedistance between 2 nearby points (in a 3-dimensional embedding). The Wolfalgorithm would give positive contributions to the Lyapunov number associatedwith the large increases in the distance in Fig. 1(c), but this does not reect anexponential divergence of the trajectories.Other algorithms for estimating Lyapunov exponents �t various forms offunctions to the embedded data and calculate the local divergence based on lo-cal linearization of these functions [68, 62, 78, 7]. Critical issues in the reliabilityof the estimation of Lyapunov exponents are the inuence of noise, the choice of�tted functions, the size of the neighborhood over which the �tting is done, andintroduction of spurious exponents from use of too high an embedding dimen-sion. There has not been a convincing demonstration that current techniquesare useful for looking at systems whose attractors are high-dimensional m > 3.Surrogate data and tests for determinismThe above measures are frequently di�cult to interpret since stochastic systemsmay also yield a value for the dimension and Lyapunov number. Recent work hasemphasized the need to compare the values of these statistics as generated from atime series, to the values generated by suitably constructed stochastic processes.The structure that a statistic is detecting in the cloud of embedded points maypossibly be the result of a non-chaotic dynamical mechanism | for examplestochastically forced linear dynamics. We have found, for example, that heartrate signals cannot systematically be distinguished from stochastically forcedlinear dynamical systems [38]. The same is true for the EEGs we have studied[24].Theiler et al. [75] have proposed a form of bootstrapping that enables anystatistic | even those not typically associated with chaos | to be used poten-tially as a probe of nonlinearity in the data. The bootstrapping involves thegeneration of \surrogate data" that has certain properties in common with thetest data. For example, random surrogate data can be synthesized that has thesame autocorrelation function as the test data. The surrogate data can be usedinformally to evaluate whether a �nding of low-dimensional dynamics indicateschaos (see, for example, a study of ventricular �brillation using a dimensionstatistic [42]).The di�culties above indicate the need for having measures that addresswhether a given time series is generated by a deterministic process. Our work11



[37, 38, 39] is based on the observation that deterministic systems will havewell-de�ned vector �elds. By embedding a time series using standard methodsand examining the ow in coarse-grained hyperboxes we can study the extentto which ows through local neighborhoods are locally parallel as would befound for deterministic systems. This work, (see also the article by Kaplanin this volume) has shown that several short time series showing heart ratevariability or electroencephalograms did not show evidence for determinism butwere indistinguishable from a stochastically forced linear system with the samepower spectrum [38].Another approach to the analysis of determinism is to distinguish betweendeterministic chaotic systems and stochastic systems based on the extent towhich future values of the system can be forecast from past values i.e. to testthe predictability.There are two complementary approaches to using predictability. The fallo�of predictability with increasingly future forecasts can sometimes be used todistinguish di�erent types of dynamics. Although it is sometimes possible tomake short-term forecasts for chaotic systems, the predictability is expectedto fall o� on a time scale governed by the positive Lyapunov exponents. Forexample, Sugihara and May examined month-by-month records of the numbersof measles and chicken-pox patients, and showed that the measles record wasmore predictable than white noise, and that the predictability falls o� in amanner consistent with chaos [74]. The interpretation of results such as these issomewhat di�cult, since stochastically forced linear systems can show similarfall-o�s.A second approach, due originally to Casdagli [9] examines whether locally�t linear models perform better at forecasting than globally �t models. If thelocally �t models are better, this provides evidence for nonlinear structure in thedynamics | even nonlinear stochastic structure can be detected in this manner.This approach has been adopted, for example, by Longtin [51] in the analysisof spike trains from sensory neurons.4 Di�culties in Analyzing Physiological DataIn this section we consider in more detail some of the properties of physiologicaldata that impose di�culties in the use of many nonlinear dynamics statistics.NonstationarityIf statistical characterizations of a time series are not constant in time thetime series is nonstationary. One cause of nonstationarity in time series is theconstantly changing environment. An obvious but important example is foundin the study of 24-hour heart rate variability | in a natural setting, subjects12



are constantly changing their posture or level of activity. Even when sleeping,changes in sleep stage have a demonstrable e�ect on heart rate variability.Other forms of nonstationarity may arise from transients. One role of thevarious physiological control systems is to respond to changes in environment orother \perturbations." Usually, a physiological control system is not at steadystate.In some cases, the interaction between control systems may lead to very longtransients | for example, the time scales over which short term cardiovascularcontrol systems act ranges from seconds (the parasympathetic nervous system)to hours (renal uid volume) [32]. Altogether, variability in physiological pa-rameters often has a 1=f spectral form, suggesting strong nonstationarity ofeven long-term physiological recordings [60, 43].Several approaches have been used to deal with nonstationarity in physiolog-ical time series. The simplest is to use short time series where, it is presumed,nonstationarity is not a severe impediment (e.g., [42]). Another technique is toattempt to correct for slow drifts, either by the subtraction of trends or takingthe �rst di�erence of the time series (e.g., [74]). The �rst step is obviously todetect the existence of nonstationarity | visual clues to nonstationarity canbe provided by recurrence plots [16], where the time at which the embeddedtrajectory returns closest to itself are indicated for each point in the trajectory.NoisePhysiological systems often display complex uctuations that are frequentlyidenti�ed with stochastic \noise". Most physiological processes ultimately area�ected by the opening and closing of subcellular ion channels, and most workersbelieve that the kinetics of the channels is best decribed by stochastic processes.Consequently, stochastic processes or noise are ubiquitous in living systems. Yetconventional wisdom is that the averaging that occurs in going from one hier-archical level to the next, can lead to deterministic models (e.g., the Hodgkin-Huxley equations) being appropriate for cellular and supercellular processes (seeFig. 2). There is not now a good mathematical understanding of the propertiesof nonlinear dynamical systems in the presence of noise, or how the variousstatistical measures discussed in the previous section are a�ected by noise.In addition to this problem,many physiological processes display non-gaussiannoise, and the statistics can be dominated by \outliers". One example, fromheart rate variability, concerns the existence of premature ventricular beats.The premature beats introduce very short inter-beat intervals into the heartrate record which may have a relatively �xed relationship with the timing of thepreceeding and following beats.An anecdote may illustrate the potential role of such artefacts in nonlinearanalysis of physiological time series: in a study of changes in heart rate vari-ability with aging, a comparison was done between the correlation dimension ofheart rate and the dimension of a random surrogate time series with the same13



power spectrum. The purpose was to see if the correlation dimension foundevidence for nonlinear dynamics in the heart rate time series. The results wereextremely strong: in young people (mean age 28 years) there was not di�erencebetween the heart rate time series and the surrogate data. In old people (meanage 75) there was a very distinct and systematic di�erence: the dimension ofthe heart rate time series was much less than the dimension of the surrogatedata. A careful investigation of the reasons for this revealed that prematurebeats (which have a di�erent physiological mechanism than normal beats) wereproducing spikes in the heart rate record and the randomization technique usedin constructing the surrogate data was transforming these highly-ordered spikesinto random white noise. Although the correlation dimension calculation wasnot sensitive to the occasional spikes in the heart rate record, it was very sen-sitive to the white noise in the surrogate data. Since premature beats occurmore frequently in old people (something that is well known clinically), the cor-relation dimension was able to distinguish between heart rate and the surrogatedata only in the old people. When the premature beats were removed from theanalysis, the di�erence between heart rate and the surrogate data disappeared.High dimensionsPhysiological systems are typically high dimensional and as such are di�cultto analyze. For example, Data set B in the Santa Fe Time Series Competi-tion consists of simultaneous measurements of heart rate, respiration force, andblood oxygen concentration. (See [?], this volume.) These were only a partof the original data set, which included systolic and diastolic blood pressure.When one realizes that each of these measurements is itself the end result ofdynamics coupled through nonlinear delayed feedbacks, the possibility emergesof high-dimensional dynamics. Perhaps the intrinsic di�culty of these problemsis reected in the reluctance of most participants in the competition to analyzeData Set B, in comparison to some of the other sets.Although it is theoretically possible under certain conditions in determin-istic systems for a single measured variable to be able to represent the entiresystem's dynamics, it is not well understood when this is a practical approach| the relationship between, say, respiration force and heart rate is su�cientlycomplex that it may be necessary to include both measured signals (as well asother coupled signals such as blood pressure) in a dynamical analysis of cardio-vascular control. The use of multiple signals can lead to very high embeddingdimensions (each signal may need to have several lags used in order to get ameaningful representation). The use of most nonlinear dynamics techniquesin high-dimensional embeddings has not been well studied, and there is littleknowledge about the best ways of representing multiple signals or of identifyinginteractions or coupling among signals.As another example, consider the spread of excitation in heart muscle. Thisis a problem which is intrinsically in�nite dimensional. Common measurement14



methods involving surface ECG recordings reect a projection of this problemto low dimensions. However, the ECG from a single lead is at best a crudeindicator of the three dimensional spread of excitation, particularly for rhythmswith complex spatial organization such as ventricular �brillation and ventriculartachycardia. Current mapping cardiac electrical activity are being made with512 simultaneous electrodes [36] and optical techniques provide resolutions ofupwards of 10000 pixels [12]. How best to reduce such measurements to a low-dimensional representation is an unsolved problem.Related issues involve the EEG as a measure of brain activity. SurfaceEEG recordings reect averages of electrical activity over millions of cells. Thefunctional signi�cance of the EEG waves are not well understood. Claims thatthis data reects low dimensional dynamics have been numerous, but our ownpreliminary analysis of this problem does not show low dimensional dynamicsor evidence for determinism in data sets of normal EEG activity.5 Applications of Time Series Analysis { Chaosor Characterization?One of the principal goals to date of nonlinear dynamical time series analysisin physiology and medicine has been to establish whether time series arise fromchaotic dynamical systems. There has been an unfortunate tendency to assumethat if a computer program prints out a �nite correlation dimension or onethat has a non-integer value, or the program gives an estimate of a maximumLyapunov exponent that is positive, then the time series is chaotic.The search for deterministic chaos in complex physiological systems has fo-cussed discussion away from other important issues. One possibility is thatnonlinear statistics such as the correlation dimension can be e�ective ways ofdescribing time series from physiological systems even though these systems maynot be chaotic. Particularly in the EEG literature, there has been an attempt touse the correlation dimension to distinguish between di�erent mental or physi-ological states [5, 66]. There have also been attempts to characterize the \com-plexity" of heart rate and blood pressure variability using statistics motivatedby dimension and entropy [40, 65].Insofar as it is desired to use statistics such as the dimension or entropy ascharacterizations of the (perhaps stochastic) dynamics of the time series, thereare several issues of importance. It needs to be established whether the statisticindicates a physiological quantity (for example, sleep stage or the occurrenceof an epileptic seizure or susceptibility to ventricular �brillation). This canonly be demonstrated by showing that the value of the statistic changes ina consistent manner as some physiological condition changes, or by showingdi�erences between populations in physiologically distinct states. Perhaps themost remarkable claims for the application of dimension analysis have been made15



by Skinner et al. [72, 49], who claim that the onset of ventricular �brillationcan be predicted based in a fall of the pointwise correlation dimension to a valuenear 1.If a nonlinear statistic, such as the dimension, distinguishes time series fromdi�erent physiological conditions, it is important to know if the statistic re-ects information apparent visually in the time series or that can be found frommore conventional measures such as the autocorrelation function. For example,EEGs are conventionally classi�ed by the energy in various bands of the powerspectrum. Do changes in dimensionality of the EEG follow these power spec-tral changes, or vice versa? Questions such as these can perhaps be addressedby systematic use of surrogate data. (\Theoretical" arguments that a givennonlinear statistic is orthogonal to a conventional statistic such as the powerspectrum, need to be examined with care. For example, the use of the zero-crossing of the autocorrelation function to set the embedding lag � in correlationdimension calculations may introduce a link between the power spectrum andthe calculated dimension.)In many cases the justi�cation for using a given statistic (such as the cor-relation dimension) is founded on assumptions that may not be appropriate inphysiology, such as that the system is deterministic or that all transients havedied out, or that the level of noise is small. In these cases the hope is thatthe statistic will nonetheless prove to have physiological meaning even when theassumptions do not hold. A better approach might be to use statistics that donot make unwarranted assumptions, for example, statistics that are intendedto provide useful dynamical information even for stochastic systems. For ex-ample, Pincus [64] has introduced an \approximate entropy" statistic that canbe interpreted for stochastic systems in terms of Markov chains. Nychka [62]has described an algorithm for calculating local divergence (i.e., Lyapunov ex-ponents) which is based in nonparametric regression and therefore expresslydesigned to be resistant to small amounts of noise.The analysis of complex time series requires signi�cant skills in mathematicsand computer analysis of data. Since very few physiologists or physicians havesuch skills, progress in the applications of nonlinear dynamics to physiology andmedicine requires interdisciplinary groups. If nonlinear dynamic phenomenaturn out to be important in medicine, it will be necessary in the future to o�ertraining in nonlinear mathematics to a subset of physicians. Since complexdynamics cut across all branches of medicine, and it is unlikely that more thana handful of physicians will be interested in strong mathematical training, onecan foresee a time when a new medical specialty, a dynamicist, will take a placeamongst cardiologists, neurologists, and the other \ists" of medicine.This work is supported by a grant from the Natural Sciences and Engineering16
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