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Faure, Philippe, Daniel Kaplan, and Henri Korn. Synaptic efficacy hypothesis requires a demonstration that deterministic patterns
and the transmission of complex firing patterns between neutonszan be, and are effectively, transmitted along neuronal chains.
Neurophysiolg4: 30103025, 2000. In central neurons, the summa- Thjs jssye faces numerous difficulties, particularly in in vivo

tion of inputs from presynaptic cells combined with the unreliabilit eparations. due to the variability of the ongoing activity in
of synaptic transmission produces incessant variations of the mem- P ! Yy going y

brane potential termed synaptic noise (SN). These fluctuations, whidgurons called synaptic noise (SN) (Brock et al. 1952). This
depend on both the unpredictable timing of afferent activities afPise has been first attributed to a “random synaptic bombard-
quantal variations of postsynaptic potentials, have defied conventionagnt” of the recorded cells. Except for an early claim (Calvin
analysis. We show here that, when applied to SN recorded from tard Stevens 1967) and some recent reports (Arieli et al. 1995
Mauthner (M) cell of teleosts, a simple method of nonlinear analysi996), the view according to which SN degrades neuronal
reveals previously undetected features of this signal including hiddgihctions has remained prevalent over the years (for a review
periodic components. The phase relationship between these comgos Ferster 1996). More important, this process has been com-
”e”tst IS Compa.“b"*tr‘]’f"th the ryot:;)nt that t_h(ta_ temtﬁorat'horgan'zdat'on nly assumed to be stochastic (Calvin and Stevens 1967;
events comprisin IS NoiIse IS deterministc ratner than ranaom .
that it is ger?eratgd by presynaptic interneurons behaving as coua%iadlen and Newsome 1998; Softky and KOCh 1993),_and 't.
periodic oscillators. Furthermore a model of the presynaptic netw s been most often modeled as such (Mainen and Semows'('
shows how SN is shaped both by activities in incoming inputs and By95; Stevens and Zador 1998). Therefore recent studies on
the distribution of their synaptic weights expressed as mean quadféi§ intriguing phenomenon have mostly concentrated on
contents of the activated synapses. In confirmation we found expauhether or not, and in which conditions, such a Poisson pro-
mentally that long-term tetanic potentiation (LTP), which selectivelgess contributes to the variability of neuronal firing (Shadlen
increases some of these synaptic weights, permits oscillating tempegal Newsome 1994, 1995; Softky 1995). However, the re-
patterns to be transmitted more effectively to the postsynaptic cefewed interest in SN leaves open the question of whether
Thus the probabilistic nature of transmitter release, which governs @Becific information about the state of firing of the presynaptic
strength of synapses, may be critical for the transfer of compleiyyorks can be extracted from SN despite its random time
timing information within neuronal assemblies. PP . .

appearance. The variability in both the amplitude and time of
occurrence of the synaptic responses that build up SN pre-
cludes the sole use of conventional methods in solving this
problem.

The nature of the neural code has led to much speculationin this paper, we analyze the fine structure of SN in terms of
(for a review, see Buzsaki et al. 1994; Eggermont 1998; Fuji &ning and amplitude. SN was recorded intracellularly from the
al. 1996). For example it has been proposed (Hebb 1949authner (M) cell of teleosts, the command neuron of the
Hopfield 1995; Perkel and Bullock 1968; Von der Malsburgdversive reaction to external stimuli (Zottoli 1977). Specifi-
1981) that the coding of information in the CNS emerges frooally we want to understand how SN reflects the state of the
different firing patterns. Such codes may include the rate pfesynaptic networks and how synaptic junctions are involved
action potentials (Georgopoulos et al. 1986; Shadlen and New-the transmission of this information. For this purpose, we
some 1998), well-defined synchronous activities of thexamined physiological recordings using analytical tools based
“gamma” type (40 Hz) particularly during binding (Singeron nonlinear dynamics (for a review, see Abarbanel 1995;
1993), and more complex temporal organization of firing iBchreiber 1999) already successfully applied to decipher the
large networks (Nicolelis et al. 1995; Riehle et al. 1997). complexity of other neuronal systems (Guckenheimer and Ro-

Relevant to the present study, it has been suggested twat 1997; Pei and Moss 1996; Schiff et al. 1994). Our results
chaos, found in several areas of the CNS (Pei and Moss 19B8fticate that, surprisingly, the fluctuating properties of syn-
Schiff et al. 1994), may also contribute to the neuronal co@pses govern the degree to which complex activities in presyn-
(Skarda and Freeman 1987, 1990; So et al. 1998; vaptic networks are recapitulated postsynaptically and that this
Vreeswijk and Sompolinski 1996). But the validation of thigprocess is facilitated by a classical paradigm of learning.

INTRODUCTION
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Part of this work has been presented in an abstract foData analysis

Faure and Korn 1998a).
( ) An approximation of the time derivative of the recorded signal was

calculated using first differences. The peak amplitudes and times of
occurrence of the resulting upstroke “spikes” constitute the signal that
was subjected to further analysis. These spikes could be easily re-
solved against the background noise. The spike train was sieved by
ignoring all events whose amplitudes fell below a specified threshold,

Inthe M cell of teleosts, the command neuron of the escape reactfbn] Nus the spike sequence submitted for further analysis depends on
from adversive stimuli, SN is inhibitory and is generated by tw80th the signal itself and the imposed threshold.

groups of glycinergic interneurons (FigA)lone of which is driven by The derived trains were examined with several techniques. Inter-

auditory inputs (Faber and Korn 1978). This activity was recorded ﬁ?”.(e even(tphistogralr?)z;\)/er$hconstructed using a kefmﬁl'bas.id der!sity
A . . . y . ) estimator (Parzen . The power spectrum of the spike point

vivo in a quiet auditory environment with KCI-filled microelectrodes - ; . - .

in the M-c?ell lateral de);ldrite of anesthetized adult goldf@hrassius process was estimated using the discrete-time Fourier transform of the

! : ; 12 kHz signal set equal to 1 at the time of events and O elsewhere.
auratgs n-= 14) and zebrafishBrachydanio rerg n = 16) as Nonlinear structures in the spike trains were examined graphically
described in Faure and Korn (1997). Because the inhibitory postsygg—mg return maps, also referred to as Poihcaags (PMs) (Faure and
aptic potential (IPSP) in the M cell is hard to detect as a potentighrn 1997, 1998h: Garfinkel et al. 1992). The PMs were constructed
change (Furshpan and Furukawa 1962);-Gtas iontophoretically py scatter plotting each interval between two successive elgnts
injected through the recording microelectrode until large and stablgversus the previous ongn). Note that in all maps presented in this
full-sized depolarizing collateral IPSPs evoked by antidromic aCtiV@eport‘ each point corresponds to consecutive pairs of intervals)

tion of the M axon (Faber and Korn 1982) were recorded. Thus thénong three IPSPs. That is for the first data point of the illustrated
IPSPs comprising SN also appeared as depolarizing potentials (igries)(n) = |, andl(n + 1) = I,, whereas for the second on&y) =

1B, top). Recordings were digitized at 12 kHz and filtered at 3 kHk,, I(n + 1) = |5, and so on.

with a low-pass Bessel filter. Quantitative measurements of possible nonlinear determinism, or

METHODS

Electrophysiological recordings

C,
I I(n+1)... )

2000

C2 25 msec
I(n+1)..

I(n)

dv(t)/dt

12.5 msec

Fic. 1. Experimental network and illustration of the threshold methadMauthner (M) cell’s inhibitory pathways with
commissural interneurons (Comm.) activated via VIII nerve fibers and the recurrent collateral (Coll.) pathavads, excitatory
and inhibitory connections, respectively, top: sample of synaptic noise (SN) recorded at a fast sweep speed with consecutive
inhibitory postsynaptic potentials (IPSPs) observed as depolarizing events due to-thea@ing and indicated by dot¥/(t)].
Bottom corresponding time derivative Yt)/dt]. Note that the upstroke spikes can be easily distinguished from the background
instrumental noise delineated by - -G, 1and2: derivative of a segment of SN recorded at a slow sweep speed; spike events each
corresponding to a differentiated IPSP were selected by a threslfold). C1: intervals between each detected event (In) and the
next one (In+1) were successively measurad {op line) for further analysisC2: as the threshold was lowered, more events were
incorporated in the time series)(
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otherwise stated of the degree to which the studied signals canrbethod for assessing the resulting increase of inhibitory synaptic

distinguished from random processes, were made as explainedstiength was based on measurements of the reduction in the anti-

APPENDIX A. dromic spike height due to the inhibitory shunt. Since this action

potential propagates passively into the soma (Furshpan and Furukawa

1962), any conductance change can be calculated-agV/V') — 1,

whereV andV' are spike amplitudes in the absence and presence of
A mathematical representation of the presynaptic networks aimhibition, respectively. This expression represents the ratio (or frac-

their dynamics consisting of four coupled model interneurons wéisnal conductancef,,sdG,,,, the two terms being the inhibitory and

built following Hindmarsh and Rose (1984) and Rose and Hindmarssting conductances, respectively (Faber and Korn 1982).

(1985). In this physiologically relevant and widely used model (Abar-

banel et al. 1996; Hansel and Sompolinsky 1992; Keener and Sn(a/lr:js ULTS

1998), eachneuron i= 1, 2, 3, 4 is characterized by three time-

Modeling

dependent variables;, the membrane potentiay;, a recovery vari In previous studies, we have shown that nonrandom patterns

able; andz, a slow adaptation current. Let can be observed in SN (Faure and Korn 1997, 1998b), but their
dx, detailed organization has not been elucidated despite their
Pt O K+ -z + 1o+ (1) striking appearance in the form of well-delineated triangles in

PMs. Thus several questions have been addressed in the

present study. The first was to identify the classes of dynamical

systems and related synaptic events that can produce such
geometric figures. The second was to determine what can be

4z _ r[S(x — C) — z] @) inferred about the functional organization of the presynaptic

dt networks that generate the recorded SN. This led us to inves-

wherel, is the external current intoell i, 1, is the injected current,  tigate how the firing patterns of these networks are transferred

the voltage threshold for spike generatid®,is the scale of the to postsynaptic cells. The overall conclusion of this investiga-

influence of the membrane voltage on the slow dynamicsyasthe tion is that even though synaptic transmission is probabilistic,

time scale of the slow adaptation current. Depending on the values3N is a true signal that offers insight on the state of firing of the

these parameters, the individual neurons may be in a steady state grtsynaptic networks.

generate a periodic low-frequency repetitive firing (LFRF), chaotic

bursts, or a high-frequency firing. In our tests, a LFRF was obtain%d - .

with I, = 3.281,r = 0.0021,C, = —1.6, andS was in the range of ~eriodic components in SN

[2.9-3.3]. For each neurorg was chosen to set fire at one of the

frequencies detected by our analysis of experimental data.

Synapses linking neurons were formalized as

dy, )
d t - l 5Xi yl (2)

The recorded signal(t) showed large oscillations made of
successive inverted IPSPs with a magnitude up to several
millivolts (Fig. 1B, top). The time derivative W/dt of this

N signal provides an index of the onset and size of each event: the
== 2 gt = t)(x — Ep) (4)  beginning of an IPSP was apparent as a rapid increase in slope
i-1 reaching a maximum during the rising phase of the synaptic

wherel, is the total synaptic input toeuron i, Nthe total number of Potential (Fig. B, bottor). The size of the resulting spike was
inhibitory synapses established on their target by the modeled neurBh@portional to that of its parent IPSP.

(see diagram of Fig.A), E,, is the reversal potential of the inhibitory ~ Figure IC illustrates the basic method used for this study.
current (here set te-3), andt; is the arrival time of a presynaptic Subsets of events were selected, according to their amplitudes,
spike. The latter induced a conductance chamg having atime to by a threshold in such a manner that as this threshold was
peak, ttp= 1 ms and a decay time; = 6 ms, corresponding to Jowered an increasing number of events was included in the
physlologlc_al values determined experimentally at M cell’s 'nh'b'torYesulting time series. The use of multiple-threshold levels to
glycinergic interneurons (Faber and Korn 1978, 1982; Korn and Faligr,q,ce corresponding trains of events derived from the same
1976).g;,(t) was modeled with an alpha function according to Wilso yldt recording (Fig. 2, 1 and 2) allowed us to take into

and Bower (1989). The equations were solved with time steps ideration the inf fi tained in both their timi
0.001 ms, using a fourth-order Runge Kutta scheme that ensures frygsideration the information contained in bo eir iming

all interesting variations in the dynamics are represented (Abarbaf@d relative amplitudes. ] o
et al. 1996). Solutions were desampled to produce time step95 For example, the distribution of interspike intervals (ISI)
ms. obtained with the events which crossed the higheét6,)
Simulations produced different network behaviors depending evere multimodal (Fig. B1). This confirmed their regular pe-
the value ofg,, = g,(t = ttp). These were synchronized antiphasegiodicity (see also Faure and Korn 1997), which can also be
bursts of action potentials for strong coupling, ig, = 10, asyr evidenced with autocorrelations (Hatta and Korn 1999). But
chronous and intermittent firing for intermediate coupling3.§,, = for |ower 6, this periodicity was blurred, and time intervals
10, agd Com'”?OUS f'””gf of the”neur?_ns W'Th s"ghéglucg‘gt'onﬁossessed no obvious structure when the lower-amplitude 1P-
around a mean frequency for small coupling vaues Suthas 3.5. gpg were taken into account (Fig8,22 and 3).
Simulations for this paper corresponded to the third case. Power spectra of the spike point process showed additional
) organization of the trains. In the illustrated case, everi;at
Induction of LTP (Fig. 2C), there was a broad peak between 60 and 80 Hz. This

LTP of M-cell inhibitory synapses was produced by trains of€Sult was interesting but difficult to interpret. The simplest
sounds delivered by a loudspeaker placed in the vicinity of the fish (§&Planation, that the events were approximately periodic with
ms, 500 Hz, and 75 dB) repeated every 4 s over 3 min (Oda et alperiod of roughly 12—-16 ms, was clearly ruled out by the ISI
1998). As in previous studies (Korn et al. 1992; Oda et al. 1995), théstogram (Fig. B3), which shows that interspike intervals
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periodic components were buried in SN. For this purpose,
events associated with fp were subtracted from the time series
isolated byf; (Fig. 3B1), and the maps were reconstructed with
the remaining events. This procedure disclosed a distinct sec-
ond signal-flag pattern, centered on a secondary frequency fs.
In this experiment, fs was equal to 68 Hz (FigB3, and
overall we found fp< fs in the 12 of 21 experiments where
additional triangles could be revealed.

007 These results suggest that the IPSPs in SN are organized in
a primary periodic train of high-amplitude and frequency (fp)
and in a second train of somewhat lower amplitude and fre-
guency (fs). As shown in the following text, other intervening
and smaller events correspond to at least a third oscillator, (ft).

2000 mV/ ms

V(t) dV(t/dt 20 msec

8> n=1154

O time(msec) 40 o 0 Interpretation of the PMs

o / A simple theoretical analysis consistent with experimental
data helps to interpret the signal-flag pattern. Consider a se-
03 n=1498 quence of events (Fig.A} consisting of evenly spaced IPSPs
(labeled P) having an amplitude greater tiégrand period of
7 and another sequence of smaller events (labeled S) having
an amplitude neafg and periodws, which are intermingled
— with the larger P components. The sequences that are used to
10 Hz construct the ISIs depend on the setting of the amplitude
FiG. 2. Classical 1st- and 2nd-order analysis of 8l inhibitory SN with ~ threshold. Overall, maps constructed with interwoven periodic
inverted IPSPs, 2 of which are indicated by. A2 time derivative of this S and P events and with some missing S will produce a PM
i e o Bonal Ttbions BEEy i ey Wih points scattred on the four ines shawn in Fi. 4
histograms from a lO-spsegmen)t/ of reco};diBg: at threshold,, a dominant Specifically, V_Vhen the threshold is bem’.e@mand s, only
periodicity of 16.4 ms is reveale®, 2 and3: at 6,, the periodicity tends to the P events will be detected. The resulting sequence can be
disappear B2) and the interevent histogram finally becomes suggestive ofdenoted PsPsPsPs, where capital letters stand for events that
rand?m l;orocestshBG)- & lfovc\j/_ert _pret_ctrum of tht? point prOICESS of detﬁC:_eme above the threshold. At this level, the sequence of ISIs will
events att;, with a peal IStribution suggestin Ver I | H H HH
scales (but35ee text f%r coymments). Somegogf then? (?:diga?e;;‘;v‘eerizoaier %wp,wp,wp, - . .and the PM will be a single dOt. at. the pO_SItIOI’]
identified in the return maps (see Fig.GandD). marked PsPsP. A small amount of random variationsdmwill
broaden this dot into the type of the circular cloud seen
(ISls) were typically less than 10 ms. Another interpretatioexperimentally.
which as shown in the following text is correct, is that this train At a lower threshold, neats, some S events will be detected
comprised several interwoven periodic components. Unfortand the resulting sequence of events is PSPSPsPS. The ISI
nately, such a structure is difficult to deduce from the powepmes from consecutive triples, e.g., PSP, SPS, or SPP. Pairs
spectrum since there are few objective criteria to count tloé intervals from PSP triples, e.d,,l, andls,l,, in Fig. 4A
number of peaks particularly when drifts in frequencies mapan the periodr,, and they appear in the PM along the
confound the situation. Furthermore power spectra are inseliagonal line markedm,. For SPS triples, the dot can be
sitive to phase relationships and therefore cannot provide amywhere in the square bounded by, but when the S-type
sights into the relationship between oscillators that is typicalgvents are periodic, SPS triples lie on the diagonal line corre-
a nonlinear phenomenon. sponding tors. When S events fall below, triples will be of
In contrast the PMs showed a highly structured pattern. Atllae form PsPS, SPsP, or PsPsP. These appear on the vertical or
high-amplitude threshold,, the IPSPs were strongly periodic.horizontal lines of the signal-flag pattern or at their intersec-
This appeared (Fig.Al) as a small circular cloud: each ISltion, respectively.
was followed by an interval of approximately the same dura- Finally, PMs constructed with thresholds belof¥ also
tion corresponding, in the illustrated experiment, to a principakhibit points in the lower left triangle already evident in Fig.
frequency, fp, the value of which (60 Hz) was the same as tt8#, 2 and3. These points correspond to the events denoted T
of the main peak in the ISI histogram of FigB21 and2. At that were also assumed to be part of a periodic sequence.
6,, more events were included in the PM which showed a A careful examination of the experimental PMs confirmed
triangular (Faure and Korn 1997) or, better stated, a signal-flégs interpretation. For example, the principal and secondary
pattern. The summit of this motif was centered on fp. Thigeriods m, = 16.25 ms andrg = 14.4 ms detected at the
striking figure was observed in 70% (i.e., 21/30) of the expesummit of the triangles in Fig. 2 andB2,were also apparent
iments where SN could be recorded in stable conditions. At the border of the highest density areas when the PMs were
this level there was also an outlined space filled on the loweonverted into density maps (FigC% Applying the same
left triangle (Fig. $A2), and atf; there was only the lower left protocol to the triangle obtained after excluding P events
triangle (Fig. 33). disclosed a third perioa+ = 13.3 ms at the lower edge of the
A systematic search was carried out to determine if othsignal-flag pattern (Fig.[#). The values of these three periods

o 40 61 68 73
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FIG. 3. Analysis of SN with Poincamnaps (PMs). Experimental maps obtained with the 10-s sample of SN (same experiment
as in Fig. 2).AL periodic pattern at high-thresholi with data points centered around a principal frequency (fp) of 60A2z.
at ,, a signal-flag pattern emerges, with its summit located aA3ssubsequently this geometric form tends to vanish. Note the
lack of interval data less than 0.5 ms, indicating a lockout, i.e., a lower bound of the detection of 2 closely spaced consecutive events
(seebiscussion. B, 1and2: extraction of a 2nd periodic componeBtL: events of the time series showing a sample of the IPSPs
selected by, and used to construct the mapAB. Some of these evente)(were already detected @t (middle) but their removal
resulted in a new series in which small IPSBswere predominantiptton). B2: the return map obtained with this remaining time
series disclosed a hidden signal-flag pattern centered on a secondary frequen6g t42).

helped to make sense of some of the peaks revealed by plsition in PP intervals (Fig.A top). Second, if the oscillators

power spectrum of Fig.@ (arrows). are phase locked, for example by a strong synaptic path with a
fixed delay, PS intervals will remain constant (Fig, iniddlg.
Are the presynaptic oscillators coupled? Finally, in case of a functionally weak synaptic coupling, the

The experimental PMs, corroborated by the power Spectchillators exert complex influences on each other and depend-

indicated that activities in the presynaptic interneurons that géﬂg on the previous timing of P and S events, the phase of a
erate SN are rhythmic. However the linear signal-flag structuresiiieseduent one will be advanced, retarded, or remain the same
the experimental PMs were broader than those expected if the 18- 5A, bottom). _ _
and S events were exactly periodic (in which case they would lieWhen PSPSP sequences corresponding to pefipasid g
exactly on the 4 lines of Fig.B). Two explanations were possible Were extracted from SN and ranked as in Figl3wve found that
One was thatrs, 7, and; were independent of each other andntervalsP,P, andS;S, were strongly correlated and that S events
varied randomly. The other was that, as in other neuronal systefgfe not homogeneously distributed between P ones as would be
(Keener and Glass 1984; Pei and Moss 1996), the parent osclig case if the oscillators were independent. This phase relation-
tors of the P, S, and T events are coupled to one another, tehi was quantified, as illustrated by the plot of FiB2%black
producing fluctuations in the periods. circles) in which the regression line shows a statistically signifi-
An analysis of the time intervals between the IPSPs corant P < 0.001) rejection of the null hypothesis that the SS and
prising SN was carried out to distinguish between three distires intervals were independent. Furthermore when the largest,
alternative possibilities. First, if the two oscillators P and S athough unclear (due to their timing) S events were incorporated in
independent, S events will occur with equal probability at artiie analysis (Fig. B2, blue circles), the slope became even more
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FIG. 4. Construction of the different parts of the signal-flag pattécrthe notation is explained with a schemati¢/dt time
series comprising 3 classes of periodic IPSPs, labeled P, S, and T according to their parent frequency. Events below a given
threshold of analysis are in lower cage interpretation of a theoretical map using the same notation Asdrdesignate the origin
of the data points lying along the different arms of the triangle. Limgand w5 mark the diagonals determined by the principal
and secondary periods. Points below concern intercalatedCT @vidence that the principate, = 16.25) and secondaryrf =
14.4) periods fit the highest density of points on a PM constructed with a set of 6 successive time series corresponding to 10 s of
recording each (same experimental data as for FAg).3The density was calculated by partitioning the space iK580 square
areas (i.e., with a resolution of 0.42 0.42 ms) and by counting the number of points in each of these boxes. Areas in blue, green,
red, and yellow indicate regions containing less than 4 points, between 4 and 8, 8 and 12, or more points, respecamaly.
protocol as forC applied to the experimental data of Fi®33 Note that the return map is consistent with the 2-period theory, but
shifted: the slow periodicity is nowrs = 14.4 ms and a faster period;; = 13.3 ms is unmasked. Here colors pertain to areas
containing less than 2, between 2 and 4, 4 and 6, or more points, respectively.

pronounced. Thus the plot of FigB3 can be taken as indicating These different configurations correspond to the various
that the S events did not occur during the first 20% of the Requences of time intervals between events outlined in Eig. 6
cycle, SS intervals were dramatically prolonged when a S evditey stress the diversity of temporal structures contained in
occurred in the first half of the PP interval, and these intervaidN. The period-1 orbits correspond to a single interval between
were shorter when the S events occurred later in the PP sequepidgcessive events. Period-2 orbits correspond to two different
These three forms of mutual interaction are consistent with a wedliernating intervals, while period-3 ones include three distinct
coupling between oscillators. sequential repeated intervals and these iterations can be gen-
This coupling was not strong enough to phase-lock the S Hiplized ton._Th_e construction of the ARPs is more comple>_<;
P events to a stable and constant interval, but it could prodJB€ Successive intervals converge toward and tend to stabilize
short sequences that exhibited almost constant phase relatfjQund a fixed one, but they rapidly escape following distinct
ships between the P and S oscillators. Advance and retrBaths as illustrated in Fig.A6 »
patterns (ARPs), similar to those seen previously (Faure and-inally it should be stated that the measures of determinism,
Korn 1997), were observed in the PMs (Figh)6 These !-€- the percentage of determinism (%det) andui(& entropy
stemmed from the slow drift in phase between S and P everigee details IMPPENDIX A), were statlstlcal_ly significant in 19 of
When the two oscillators were half a cycle out of phase thdj€ 21 experiments when compared with surrogates, confirm-
appeared as a fixed point (FigAB2) but since they were not N9 the nonlinear properties of SN.
phase locked, this point was unstable and the next points
labeled 3 and 4 in the PM diverged along a well-defined pafomplex patterns in presynaptic networks
resembling that of unstable periodic orbits (UPOs) often asso-
ciated with chaos (So et al. 1998). Other types of period 1, 2,Numerous reports have demonstrated that coupled neurons
and 3 orbits were also found (FigBB can behave as oscillators and generate a vast repertoire of
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independent f

p TP P P P
I »
S S TES S S
| i ] l
phase locked FIc. 5. Interactions between the periodic
componentsA: schemes of the possible tim-
Ad ing of P (red) and S (black) events generated
ot _{ | l | by 2 oscillators, depending on their mode of
| interaction. The S events are located any-

where {op) or at fixed distancé ¢ (middle
in the PP intervals, if the oscillators are inde-
weakly coupled — — - pendent, or if they are phase locked. In both
cases;jm, and g intervals are constant. If the
oscillators are weakly coupletdgtton), they
I | exert more complex effects on each other and
successive events, can be advanced or de-
layed, or remain unaffected in directions in-
dicated by arrows, ana and 7g vary (see
B B also text).B1: evidence for coupling between
1 2 periodic IPSPs (same data as for Fig. 3-5).
Series of 5 consecutive IPSPs, each corre-
sponding to an unambiguous and almost reg-
ular PSPSP sequences are ranked (fieftto
right) according to the value of the interval
between the first P and S events of the se-
quence (see the diagratrelow). Note the
strong correlation between the®; and BS,
intervals.B2: ratio of the SS, intervals as a
function of their position in the fP, inter-
vals, parametrized by the ratip = P,S,/
P,P,. Note that largerp are associated with
shorter SS intervals [red line = 232 series
(black points), slope= —3 ms,P < 0.001,
t-test]. If less regular sequences (blue sym-
bols) are incorporated, this relationship be-
comes even strongen & 301 series, slope
—10.8 ms,P < 0.001).

time

time (msec)

-
o
i

515, interval

rank of P ‘,S ] interval

Py P, P3
‘ Sy Ny

dynamic responses, ranging from periodic to chaotic firingf firing of the same order than those of the different classes of
patterns (Abarbanel et al. 1996; Borisyuk et al. 1995; Hand€ISPs revealed in PMs.
and Sompolinsky 1992; Rinzel et al. 1998). Since periodic Figure B shows that each of the neurons produced trains of
events compatible with the involvement of coupled presynaptiction potentials that were roughly periodic but fluctuated
“oscillators” were detected in SN, we assumed that the role afound a given mean period. Such deterministic fluctuations
the M cell in the oscillations is simply a read-out function, anthight account for the complexity of the experimental time
we investigated whether coupling between inhibitory interneseries (see following text). However, the sum of the impulses
rons terminating on the M cell can produce complex patterpsoduced by the four neurons took the undefined form of a
similar to those observed in actual data. We found thatrandom process and the corresponding return maps (€. 7
deterministic model, which does not involve random fluctuavere similar to those obtained by plotting events selected in
tions, can reproduce all the major features of the signal-flagtual data by a low threshold, as in FIiA3
geometry, including the broadening of the diagonal PSP andSince most highly structured PMs were those constructed
SPS lines of Fig. 4. with intermediate thresholds, and suggested the interplay of
Four interneurons were modeled as describeeiemons. rhythms from two oscillators, we focused our attention on the
They were linked by inhibitory synapses (Figd)7generating behavior of two of the modeled neurons alone. For example, in
IPSPs having a fixed latency and a constant amplitude ttee case of Fig. &, the two investigated cells fired with a mean
eliminate all sources of randomness. Values of this modefiequency of 57 and 63 Hz, respectively. Yet, the intervals
parameters were set to obtain low-frequency periodic pattefretween the action potentials in the summed train were irreg-
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FIG. 6. Further evidence for a weak coupling
between the presynaptic oscillatofs.advance
and retreat patterns (ARPs,= 5) with stable
(St) and unstable (Un) manifolds determined by
sequences of points that converge toward, and
then diverge from, the period-1 orbit (here la-
beled 2), in the indicated ordeB: map from the
same experiment (shaded). Circles mark multi-

ple occurrences of period-1 orbits (oranges

30, at least 4 iterates for each occurrence), pe-
riod-2 and -3 orbits (rech = 109, blackn = 35
respectively, at least 6 iterates): schematic
classification of the major patterns found in SN
(see text for explanations) that account for the
dynamical patterns shown i and B. Plots of
interval values (ordinates) against interval num-
bers (abscissa) in the corresponding sequence of
events represented by vertical barséts. Note

that in the case of ARPs, the time intervals
alternate around a fixed point (dashed line): they
first tend to decrease and then to increase se-

Period 2

quentially.

ular with phase shifts analogous to those produced by weaklgints (crossed arrow) that mark the intervals between action

coupled oscillators.

potentials occurring before and after a pair of synchronous

Return maps constructed by plotting these intervals exhibres (Fig. @, crossed arrow). They are the precursors of the
ited a well-delineated motif made of series of points distributesimmit of a complete signal-flag pattern.

aroundm, and wrg (Fig. 8B1). That is, they were distributed in

The scattering of points arounte} and g indicates that the

the same region of the base of the signal-flag pattern obtaingeak coupling between the oscillators produced a deterministic
experimentally. One can also note in the PM a few distadispersion of the time intervals between events (Fig1)8

A B C

neuron

Target cell

| £

10 msec

FIG. 7.

X4

I(n) 20 msec

Model of activity in a presynaptic network of inhibitory cell&.

although the simulations did not incorporate external sources
of noise. These deterministic fluctuations produced ARPSs that
resembled those observed in the experimental data (not shown)
and period-2 orbits (Fig. B2).

Role of synaptic properties in the transmission of
presynaptic patterns

The various components of the signal-flag patterns were all
evident in the same train because some types of events were
sometimes above and sometimes below threshold, the fluctu-
ations of their amplitudes allowing the signal-flags to convey
information about the periodicities of each of the oscillators. In
addition the distribution of amplitudes allowed for gradual

diagram of the formal neurons (labeled 1-4), coupled by inhibitory chemicitansitions among the types of signal-flag patterns as the de-
junctions (-, black dots) and set to fire at 57, 63, 47, and 69 Hz, respectivelyaction threshold was lowered with, consequently, a reduction

B: sample of membrane voltage produced by the 4 cells (labeled 1-4), - - P
illustrating the resulting spike trains. The summed network outh(t,§)] is fﬂ the ”U.mber of f.a"”res of detection. Therefore by examining
shown in the bottom line, with the spikes transformed into upstroke bars §1€ fraction of missed events at each level tbfwe could

amplitude 1.C: return map constructed with the summed series. approximate the extent of the overlap of some IPSPs produced
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FiIG. 8. Deterministic patterns in modeled presynaptic neurAngains of action potentials produced by simulatetls 1and
2 (thick line) of the network, showing variations of time intervals resulting from weak coupling between these neurons. Symbols
above spikes correspond to changes in their relative timing. The intervals between spikes of the 2 cells can increase (up arrow),
decrease (down arrow) or remain unchanged (equal sign) when compared with the preceding 1. The crossed arrow indicates
synchronous spike®1: return map (shaded) constructed with the intervals between all presynaptic “action potentials” produced
by cells 1and2. Note the broadband around the diagonal limgs= 17.5 andmg = 15.8 ms, arising from the purely deterministic
coupling of the involved oscillator®82: multiple occurrences of period-2 orbits in the 2 regions (black and gray dots) delineated
by circles.

by each oscillatorsxprenpix B1). The amplitude fluctuations of values for the terms& andp in the range of those derived in
these IPSPs were consistent with an involvement of synapdiarlier experiments (Korn et al. 1986).
junctions. We found that indeed, connecting the formal inter- When the neurons had the same quantal contgntall
neurons with terminal synapses that “released” transmitter IIRSPs fluctuated in the same range (Fig, 2 and2) and the
quanta according to principles established at chemical jurgignal-flag pattern did not appear in the PM (Fid\3p This
tions allowed the model to reproduce the hierarchical featunesult was easily explained by the fact that any threshold
of the PMs. detected the same proportion of IPSPs regardless of their
Chemical transmission is governed by two parameteasd parent cell and despite small changes at the extremities of the
p, where n represents the population of basic “quantal ukjts'inverse cumulative densities of the amplitude events (FAg, 9
capable of responding to a nerve impulse, arttieir average | ). These slight discrepancies were due to small differences in
response probability (Del Castillo and Katz 1952). Then thte coefficient of variation (CV) of the amplitude distributions
productnp is the so-called mean quantal content, which isf the IPSPs produced by each cell. Similar conclusions were
equal to the average number of quanta released by a giveached with other runs, whatever the values attributechiad
junction during successive trials, while the prodnpt],where p of each interneuron, as long as the four modeled cells had an
g is the size of a quantum (set to 1 in our simulations)entical quantal content (a justification of this rule, which also
determines the synaptic strength. Since at central synappegains for compound binomial statistics, can be found in
transmitter release can follow a simple or a compound binerPENDIX B2).
mial statistics, where is the same or is different for every site  When the model was modified to include differemtprod-
of release established by a neuron on its target (for a reviewets that distinguish presynaptic neurons from each other
see Korn and Faber 1991; Redman 1990), we tested these (iorn et al. 1986), the signal-flag pattern was restored in the
models in this study. maps and the ARPs reappeared, as well as period-2 orbits (not
First, a simple binomial model, previously shown to accoustown). This result is illustrated in FigB9 1-3,for which the
for the amplitude fluctuations of IPSPs evoked in the M cell Bineurons” had a quantal content of 13.3, 6.2, 3.7, and 1.86,
its presynaptic interneurons (Korn et al. 1982), was used witkspectively. Again, this result can be easily explained. As
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FiG. 9. Contribution of synaptic properties to the transmission of presynaptic patferis3 analysis of postsynaptic signals
produced by uniform junction#\1, top same model and parameters as for Fig. 8 but implemented with synaptic terminals labeled
1-4, having different release parameters, nes, 12, 14, 20, and 25 amgl= 0.52, 0.44, 0.31, and 0.25, respectively, and the same
guantal contentap. Bottom superimposed fluctuating IPSRs+£ 10) of statistically equal random sizes generated by each of the
neurons. Note that these IPSPs are equally detected by.ak¥ inverse cumulative event density, i.e., density of events with
amplitudes greater than a given size expressed in number of quaatdifiates) or otherwise stated, percentage of detected events,
as a function of the number of available quanta (abscissa). The 4 curves are almost similar (except at their extrémites—
text). A3: the interevent intervals appear as random in the BM.—3 same presentation as in the preceding text but with terminal
synapses having different release parameters, i.e., feénto right, n = 38, 20, 8, and 3 ang = 0.35, 0.31, 0.47, and 0.62,
respectively, and distinct quantal contents. Thuketects preferentially IPSPs from oscillators 1 and 2 and the corresponding PM
exhibits a signal-flag pattern centered on the frequency of the largest events (fp).

shown by Fig. 8, 1and2, at intermediate value®,identified strength of the M cell’s inhibitory synapses are modified in
preferentially IPSPs produced by the first two cells. For examivo by LTP, a classical paradigm of learning that can be
ple, whend was set to select the same proportion of events (i.induced in teleosts by trains of sounds emitted in the vicinity of
=42%) as in Fig. 82, 100% of events frontell 1 and 60% the fish. This form of LTP is due to an increase of the
from cell 2 were suprathreshold, against only 10 and 0% fromesynaptic parameter of releape while n and g remain
cells 3and4. _ _ . unaffected (Oda et al. 1995). As in previous reports, the po-
_ Second, the model was implemented with terminals “releagntiation of the inhibitory synapses was quantified using a
ing” according to nonunifornp’s. As illustrated in Fig. 10, the narameterr’, or fractional conductance, which defines the
results were almost indistinguishable from those describedd'@gree of the inhibitory shunt (seTHops).

the preceding text. That is, a signal-flag pattern, ARPg&nihd-2 As expected the amplitude of IPSPs comprising SN was

diferent. This incing was not SUrprising since the distibutioffcre3sed during LT (Fig. 121 andB.1). Furthermore return
histograms of IPSPs modeled by a compound ipiiab are maps constructed with a high-threshol@,)(were markedly

roughly similar to those from a simple binomial distrtion but with (ﬂ‘feprgnt t(;jeéc;re '?r:]dt gfteLthge tcondltt;]omng fhou?d tra|n§|| (tF'g'
a smaller CV than with a simple binomial statistics. , A2 andB2). That is, strengthened the two-oscillator

Finally it should be noted that in these simulations values §fangular pattern in the PM, as further evidenced by compar-
nandp were inversely correlated as experimentally observedgg the PMs constru;:ted with a lower tgfeshfﬂQ'(F'g- 11,82
M cell’s inhibitory connections (Korn et al. 1986). HoweverandC) and by the 8% increase of the %det (FigD}10n the

this need not be the case (se®@enpix B2). other handmy, and 7 remained the same (Fig. L Zuggesting
a stability of the dynamics in the network.

In four experiments,r’ was increased by 29+ 8.1%
(mean= SE) after the learning protocol, indicating LTP of the

To verify the involvement of synaptic efficacies, we coneommissural synapses (Korn et al. 1992), and the %det was
ducted a series of experiments, taking advantage that #hghanced by 14.3 2.1%. Adding three other experiments,

Experimental validation
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Fic. 10. Analysis of IPSPs produced by nonuniform junctions. Sgrag for Fig. 9 but with different probability of release at
each terminalrf) of simulated neuron#, 1-3 all neurons have the same quantal contéit.histograms op values (abscissa)
in the terminals oheurons 1-4from top to botton) with indicated (). Meanp values were 0.52, 0.44, 0.31, and 0.25, with a
variance of 0.32, 0.45, 0.55, and 0.6, respectivélg. inverse cumulative density of events and thresh@ldith indicated
proportion of the detected events (same comments as for AR). 83: corresponding PM with random distribution of interevent
intervals.B, 1-3 same presentation as far 1-3,but with terminals having different quantal contents. The npaere 0.35, 0.31,
0.47, and 0.62, and the variances were 0.63, 0.56, 0.45, and 0.32, respectively. Note the signal-flag pattern in the PM.

during which LTP was only assessed by comparing the ampliveen the P and S oscillators relies on the detection of events
tude of IPSPs (to avoid further modifications of SN by contralnd their classification as P, S, and T. Thus any failure of
sounds), this value became 1131.8%. In another cell, the detection or classification that is related to the timing of the

sounds produced no LTP and the determinism was unchangssikes could artifactually influence the display of coupling.

However, when constructing FigB2, we remained conserva-

DISCUSSION tive and considered only events (shown in black) belonging to

Taken together these results suggest that the informatidfmpiguous PSPS quartets. P, S, and T events were selected
contained in SN permits the dynamics of the presynaptic n&iNg a criterion that combines amplitude with timing infor-
works to be reconstructed. This information is contained bofiation- Specifically, P events were obvious and, despite pos-
in the intervals between IPSPs and in their amplitudes. Sl le confusions between S and Tgvents due t_o ovgrlap of their

Our data can be generalized as follows. Several combirfi&®: MOSt S ones could be identified as such in Pointares
tions of P and S events in triplets, some of which result fro%nce_they appeared on the diagonal line corresponding to the
failures to detect events, are necessary to construct a comp fée”of' Second, how reliably could we detect closely spaced
signal-flag pattern. This prerequisite is guaranteed by the “s&y€nts? Events closer than a given time separation were not
arating power” of the largestp products at the terminals of istinguished |_n_the time series. This issue was important
neurons that generate the SN. On the other hand identiffigfause a sufficiently long lockout can produce the illusion of
dynamical sequences (ARPs, periodrbits and other signs of COUPIing. But this lockout was approximately 0.5 ms, and there
determinism) are found at the base of the signal-flag pattefi¢ €W points with shor in Fig. 582 simply because there
and the clarity with which they appear is related to the emé{/€re few PSPS quartets. Theoretical analysis shows that the
gence of both P and S events in the time series. This sec g ms lockout is too short to produce artifacts mimicking the
condition evidently imposes an irreducible separation betwe@ﬁttem in Fig. Bz.'nln conf;}rmatpn, s|||mulat|ons IY‘”th uncou.—h
the np products (Seerrenpix £2) that allows the presynaptic P'€d S and P oscillators show virtually no coupling even wit

; : ; lockouts as large as 3.5 ms.
dynamics to become predominant in the SN. - . :

Y P Two additional arguments reinforced the hypothesis of cou-
Validity of the coupling hypothesis pling. Data points in the PMs were not uniformly distributed as

they would be if the variability of each frequency was random
Two important issues had to be considered before acceptanyd, as demonstrated by combined electrophysiological and

that the coupling between presynaptic interneurons accouhtstological studies (Korn et al. 1990; Triller and Korn 1981),

for the patterns observed in SN. commissural inhibitory interneurons presynaptic to the M cell
First, might we have incorrectly classified as P, S, or a@re linked by chemical inhibitory synapses.

activities? Our methodology for displaying the coupling be- Other simulations can produce triangular maps. Such is the
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FIc. 11. Changes of temporal patterns during
long-term tetanic potentiation (LTPAL: time de-
rivative of a segment of SN recorded 8 min before
the conditioning sounds (see texA2: PM obtained
with a high-threshold6,, showing an emerging
cloud around 68 Hz (suggestingma of 14.7 ms) B,

1 and 2: same presentation of SN collected 8 min
after the onset of the learning protocol with an
increased number of suprathreshold events and a
triangular map.C: lowering the threshold imAl
from 6, to 05, to match the number of events B2,

the map still shows a somewhat different signal-flag
pattern.D: pooled values of the percentage of de-
terminism (%det) calculated amwindows of 10 s
each, obtained during the 10 min preceding and the

15 min following the onset (arrow) of the condition-
ing sound trains (vertical bars are SEjest signif-
icant (asterisks) at 1%.

D

%det

10' €3 15'

case for models based on one oscillator producing large evelRs cycle (which includes the falling phase of the P events)

intercalated with smaller ones occurring at random (not showeyd during the second one.

or on several independent and noisy oscillators, each making

events of different amplitudes, and a fixed level of detec“?ﬂteuronal correlates of the presynaptic oscillators

However when examined in detail, such maps do not exhibit

the fine temporal structure (periodic orbits, phase relationships)Nonlinear deterministic components have been identified in

found in the SN recorded from the M cell. SN (Faure and Korn 1997, 1998b), and it is well established
Finally could nonlinearity in synaptic transmission and/dihat coupled oscillators can generate similar patterns, including

the responsiveness of the M cell to its inputs create ti§8aotic ones (Glass and Mackey 1988). The frequencies of the

observed patterns? While this is conceivable, the most 0(g,'imIlat(_)rs_unmasked in this study are anS|stent with thos_e_of

vious sources of nonlinearity so far identified in the M cef"€ Periodic components already noted in the M cell’s inhibi-

system are unlikely to be involved. In particular the effect®"Y SN (Faure and Korn 1997; Hatta and Korn 1999), Wh'ch

e in the range of the so-called gamma rhythm observed in

of presynaptic depression that reduces IPSP amplitudesl\f]vgl,';]er vertebrates (Jefferys et al. 1996; Singer 1993).

high rates of presynaptic firing are stabilized at frequenc'esgAnatomical and physiological studies have shown that

more th_an 33 Hz (Korn et al. 1984). In_conﬂrmatlon N%here are more than four interneurons in the M-cell presyn-
correlation was found between the amplitudes of the Sugsiic network with the estimates being in the range of at
cessive P even.ts or betweep thEI!’ amplitudes and tlmlng..@hst 50 (Faber and Korn 1978; Korn and Faber 1990). Thus
the postsynaptic level, we investigated whether the nonliR-is surprising that the contribution of a few oscillators can
ear summation of potential change (Martin 1955) and, moge distinguished or, in other terms, that the amplitude of the
importantly, the voltage dependence of the decay of IPSFESPs produced by each of these oscillators seems to be
(Faber and Korn 1987) did affect the size of overlappingrdered according to their origin. Calculations of the aver-
events. Such seemed not the case since the amplitude dige size of the P and S IPSPs may help to address this issue.
tribution of S events was the same during the first half of tHa the goldfish M-cell system, the size of an inhibitory
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Fic. 12. Stability of presynaptic frequen-
cies after induction of LTP. The principal
(7 = 14.7 ms) and secondaryt{ = 13.3 ms)
periods which fit the highest density of points
were determined, with the method described in
the legend of Fig. 4. Areas in blue, green, red,
and yellow indicate regions containing less
than 2, between 2 and 4, 4 and 6, or more
points, respectively. Here PMs were con-
structed with sets of five successive time series
of 10 s of SN each. Note that, and 75 were

P . unchanged after LTP (same experiment as in
7 - Fig. 11).
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guantum is approximately 1% that of the full-sized collatand 12.1+ 1.89% ( = 10) of P, S, and T events were included
eral IPSP evoked by antidromic activation of the Mauthném the maps, respectively. These values agree closely with
cell axon (Korn et al. 1982). The mean unitary IPSP#ose of thenp products required for the construction of
produced by stimulations at 1 Hz of a single presynaptfeneaningful” maps with models.
interneuron comprise 5.8 quanta (Korn et al. 1986). Further-We observed in experimental data that the same sequence
more their amplitudes decrease in a known way at increasgfdevent intervals can produce qualitatively different pat-
stimulating frequencies due to presynaptic depression (Kamrns depending on the level of the threshold used to window
et al. 1984). Based on these values, estimations made in tithe sequence. Indeed, the probabilistic nature of transmitter
series from three goldfish indicated that the P and S IPSi$ease means that there is a graduated transition between
were, respectively, six to seven and four to five times biggéie different patterns a$ is varied. The notion that the
than the average unitary response. probabilistic componenp is critical here was confirmed by
Several hypotheses that have not been tested in this stgityulations in which the oscillators had differens but
might explain this amplitude distribution. One is that theseith p = 1 at all terminals, reducing the varianced® = 0.
IPSPs are produced by the firing of a special set of cells, thetis resulted for any level of in maps lacking signal-flag
of the rather exceptional “superinterneurons,” which evoklgatterns. The nonzero variance that results from < 0.1
IPSPs of unusually high amplitudes (Korn et al. 1986). Thguarantees that multiple components of the patterns shown
other is that a number of presynaptic cells might fire simultén Fig. 4B can be present in the signal flags. The valug of
neously. Two signaling mechanisms already demonstratedsits the relative mixture of these patterns. Changiras in
the organization of the M cell’s inhibitory network could beL TP, modifies this mixture.
involved: one is the chemical coupling between inhibitory In this context, the probabilistic aspect of neurotransmission,
interneurons that has been shown to underlie synchronizatiohose function in neuronal communication has not been clar-
in theoretical models (Jefferys et al. 1996; Traub et al. 1996ied, becomes an advantage rather than a limiting factor (Za-
White et al. 1998; Whittington et al. 1995) and in experimentalor 1998) since it allows synaptic strengths to be adjusted in a
material (Bragin et al. 1995; Whittington et al. 1995). Thenanner that shapes the transmitted information without need-
second is that the somata of the commissural interneurons g to modify the dynamics of the presynaptic network.
linked in teleosts via gap junctions (Korn et al. 1977), which The emergence of the deterministic structures in the postsyn-
favor their simultaneous discharge including those of functioagptic cell with multiple inputs is made possible by the nonuni-
ally related inhibitory cells (Gibson et al. 1999). form values of synaptic weights and the stochastic release of
Arguments offered imppenpix B3 indicate that our results do quanta. Furthermore the transmission of qualitatively different
not depend on whether the quanta are issued by synchronoysliterns in the M cell may allow encoding of a small repertoire
firing cells or are all from a single presynaptic neuron. of motor reactions as suggested by the results of LTP which is
known to underlie modifications of the goldfish escape behav-

Synaptic properties and the transmission of ior (Oda et al. 1998).

deterministic patterns

Analysis of the PMs indicated that the signal-flag patten'/l*sP PENDIX A

were clearly delineated with maximum values of the measuresy deterministic system is one whose complete behavior can be
of determinism [%det andi(e)] and the largest number of expressed with an infinite precision in a mathematical description
ARPs, when 99.3t 0.32% @ = 10), 49.7%+ 2.57% @ = 10), (usually a differential equation). Then if the initial values of all
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variables are known completely, the system’s entire future historydsstribution described by a mean amplitutieand a variance”. We
predictable and can be calculated exactly. denote the mean amplitude of the different types of events.ams,
A chaotic system, which often appears at first sight to be random; and their variances by3,0302.
is also deterministic, but it displays what is called sensitive depen-As is conventional for a gaussian distribution, any percentile can be
dence to initial conditions. That is, solutions obtained with twdepicted in terms of the standardizasheasure. For example the 2.5th
different starting points can be profoundly different: if the initiapercentile of a normal distribution lies at + z, o, As is found in
conditions are infinitesimally displaced from each other, then tlstandard tables of the Gaussian distributigyy,,s = —1.96.
solutions diverge exponentially. The extent to which they are unpre-The PMs give information about the fraction of events of each type
dictable depends on this rate of divergence. larger than a selectef that is, about the percentiles of the distribu-
The dynamics of deterministic systems are different in principliion. So, the number of missed P’s could be assessed in Rigbg
from random processes where prediction is impossible except statismputing that of the overlong intervals (with or I, > mp),
tically. which do not appear on the PMs due to the chosen scales. Sjnce
While the presence or absence of a specific form of determinismas known, one could interpolate the position of the missing P’s. This
was not the focus of this report (for this aspect of the work, see Faym®cedure indicated 52 of them inferred among the 566, i.e., 92%,
and Korn 1997, 1998b), that of SN was quantified for two reasordetected ones.
The first was to confirm that SN could be distinguished from a randomGenerally in our experiments, there was a threshold at which 95%
process. The second was to estimate the modifications producedobl and no more than 5% of T events were detected. This observation
external sensory stimuli. Two parameters were used. Both deteah be translated into thenotation asmg + 7, o0 > 6 andm; +
so-called recurrent patterns, i.e., sequences which approximativelyor < 6 (wherez, o5 is negative). Combining the two statements
repeat themselves over time (hidden rhythms). They can be computerihave
in recurrent plots (Eckmann et al. 1987), which are particularly well

suited for studies of biological processes. Mp + Zo,050p > My + Zo 9507 (B1)
Let x(i) be theith point on the orbit describing a dynamical system - .
in ad-dimensional space, for= 1, ... ,N. The recurrence plot (RP) wherez, o5 1.6 andzy o5 ~ 1.6.

Similar relationships can be found by comparing other classes of
vents: the fact that approximately 50% of S and 2% of T are greater
than® = 3,500 for the data of Fig. 3 indicates thmag + z, sog > My
o Zo.0807 OF, substituting in the tabulated values 5, andz, o5
JYS > mp + 207.

is an array of dots in &l X N square, where a recurrent point is place%
at the (, j) coordinates whenever the embedded vectais Xj),
defined here byi = [I(i), I(i + 1)] are within a predetermined cutoff
distance €). The organization of recurrent points into diagonal lin
segments of length indicates the parts of the trajectories which ar
close (under resolution) during L successive time steps.

The first parameter was the percentage of determinism (%dAppendix B2: implications of np values on the
(Weber and Zbilut 1994), which is the number of dots included ipercentage of detection
diagonal line segments divided by the total number of dots in the RP.
The second parameter was the slqp@), of the exponential decay of mando” can be related to the release parameteasdp. For each
the histogram of the number of segments of lerigtAs demonstrated type of events and assuming binomial statistics, we mave np and
elsewhere (Faure and Korn 1998b), at limits, this slope is an estinta= vV np(1 — p). ]
tion of the Kolmogorov-Sinai entropy. Relationships of the form oEqg. B1 can be used to determine

To confirm the nonlinear properties of the PMs, we Constructéheoretical limits on the number of quanta potentially involved in each
surrogate data. A surrogate is an artificial set constructed from th@e of events. For any nonzero value @f and o, this equation
original data with constrained statistical properties that depend on #Hgectly implies thatm, > m; and therefore thabgpe > nrp+. In
null hypothesis being tested. The statistical significance of the t@éher words, there can be no signal-flag pattern ifrth@roducts are
parameters was examined with the null hypothesis that all forms @fual. This rule can be generalized to a compound binomial. lhthe
determinism found in SN were brought about by the linear propertielganta are released with different probabilities, then= X2, py p,
(amplitude and frequency distributions) of the signal. For this puf, = 3, p.1, op = VIR pl—pep), and o =
pose, surrogates of t.he time derivative of the membrang potential " Pt — pey). Then it is easily shown that for fixedandm
of the raw spike trains, which matched both the amplitudes of thge "compound binomial has always a smalerthan the simple
signals and their power spectrum, were constructed using two distigg{omial distribution.
methods despite .thelr possible Il.mltatlons when applied to time inter-Eor poth binomial-type models, the smaller are the vatgeand
val series (Schreiber and Schmitz 2000). These were the amplituge- the closer can bey, andm,. In the theoretical limits where,, =
adjusted method (Rapp et al. 1993; Theiler et al. 1992) and t§&ndq, = 0, it is required fromEg. Blthatne > ny.

iterative surrogate technique (Schreiber and Schmitz 1996), WhiChUsing the coefficient of variation C¥ o/m, we have fronEq. B1
involves an iterative refinement of the latter. the relation ’

1+ 26CV
APPENDIX B M > my o 0ee VT (B2)

. o . . . 1+ 200CVp
This appendix is concerned with the synaptic properties that can

lead to the the signal-flag patterns. We treat the amplitude of eaghere C\;, and C\, are the coefficients of variation of the P and T
event (i.e., of an IPSP in SN) as random and seek to characterize g¢hients respectively. For example, taking ¥ 0.28 which is the

amplitude distributions of the P, S, and T events. mode of pooled experimental data from M cell’s inhibitory connec-
tions (Korn et al. 1986), and assuming a similar CV for the Sand T
Appendix B1: percentages of detection events, indicates that.p, > 2.62hp+. The observed relationships

between P and S and S and T events indicaterifat > 1.8Ingpg
We need some statement about amplitude distributions of eawhdngpg > 1.55py.
class of IPSPs to express their degree of overlap. Since the releasehe CV also constrains the relationship betweesnd p
mechanism may obey simple or compound binomial or possibly other
statistics (if the quanta are not released independently), we represent - 1
. L : . p= 5 (B3)
the probability distribution of the event amplitudes as a gaussian 1+ CV®n
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where the equality holds for a simple binomial model and the inequé&exmann J-P, KampHORsT SO,AND RUELLE D. Recurrence plots of dynamical

ity for a compound binomial model (whepds the mean of,). Even
under these constraint&gs. B2 and B3 allow a wide range of

systemsEurophys Let#: 973-977, 1987.
EGGERMONT JJ. Is there a neural cod&urosci Biobehav Re22: 355-370,

physiologically reasonable andp combinations consistent with the 1998.

empirically observed PMs.

Appendix B3: extension to synchronized neurons

ConsideringN cells firing synchronously, wherell i = 1, ... ,N
hasn, potential quanta for release, the total numbeof possible
qguanta is

(84

Denoting the probability of release of quantiin celli asp, ;, then
the mean number of quanta released is

mZEN: ipk,i

i=1 k=1

(BS)

which is exactly the same as if allquanta were from a single cell.
The variance in the number of quanta released inNtezlls is

ni

0'2 = E E pk,l(l - pk,l)

i=1 k=1

(B6)

which again is identical to the situation where mijuanta were from
a single cell.
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