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Faure, Philippe, Daniel Kaplan, and Henri Korn. Synaptic efficacy
and the transmission of complex firing patterns between neurons.J
Neurophysiol84: 3010–3025, 2000. In central neurons, the summa-
tion of inputs from presynaptic cells combined with the unreliability
of synaptic transmission produces incessant variations of the mem-
brane potential termed synaptic noise (SN). These fluctuations, which
depend on both the unpredictable timing of afferent activities and
quantal variations of postsynaptic potentials, have defied conventional
analysis. We show here that, when applied to SN recorded from the
Mauthner (M) cell of teleosts, a simple method of nonlinear analysis
reveals previously undetected features of this signal including hidden
periodic components. The phase relationship between these compo-
nents is compatible with the notion that the temporal organization of
events comprising this noise is deterministic rather than random and
that it is generated by presynaptic interneurons behaving as coupled
periodic oscillators. Furthermore a model of the presynaptic network
shows how SN is shaped both by activities in incoming inputs and by
the distribution of their synaptic weights expressed as mean quantal
contents of the activated synapses. In confirmation we found experi-
mentally that long-term tetanic potentiation (LTP), which selectively
increases some of these synaptic weights, permits oscillating temporal
patterns to be transmitted more effectively to the postsynaptic cell.
Thus the probabilistic nature of transmitter release, which governs the
strength of synapses, may be critical for the transfer of complex
timing information within neuronal assemblies.

I N T R O D U C T I O N

The nature of the neural code has led to much speculation
(for a review, see Buzsaki et al. 1994; Eggermont 1998; Fuji et
al. 1996). For example it has been proposed (Hebb 1949;
Hopfield 1995; Perkel and Bullock 1968; Von der Malsburg
1981) that the coding of information in the CNS emerges from
different firing patterns. Such codes may include the rate of
action potentials (Georgopoulos et al. 1986; Shadlen and New-
some 1998), well-defined synchronous activities of the
“gamma” type (40 Hz) particularly during binding (Singer
1993), and more complex temporal organization of firing in
large networks (Nicolelis et al. 1995; Riehle et al. 1997).

Relevant to the present study, it has been suggested that
chaos, found in several areas of the CNS (Pei and Moss 1996;
Schiff et al. 1994), may also contribute to the neuronal code
(Skarda and Freeman 1987, 1990; So et al. 1998; van
Vreeswijk and Sompolinski 1996). But the validation of this

hypothesis requires a demonstration that deterministic patterns
can be, and are effectively, transmitted along neuronal chains.

This issue faces numerous difficulties, particularly in in vivo
preparations, due to the variability of the ongoing activity in
neurons called synaptic noise (SN) (Brock et al. 1952). This
noise has been first attributed to a “random synaptic bombard-
ment” of the recorded cells. Except for an early claim (Calvin
and Stevens 1967) and some recent reports (Arieli et al. 1995
1996), the view according to which SN degrades neuronal
functions has remained prevalent over the years (for a review
see Ferster 1996). More important, this process has been com-
monly assumed to be stochastic (Calvin and Stevens 1967;
Shadlen and Newsome 1998; Softky and Koch 1993), and it
has been most often modeled as such (Mainen and Sejnowski
1995; Stevens and Zador 1998). Therefore recent studies on
this intriguing phenomenon have mostly concentrated on
whether or not, and in which conditions, such a Poisson pro-
cess contributes to the variability of neuronal firing (Shadlen
and Newsome 1994, 1995; Softky 1995). However, the re-
newed interest in SN leaves open the question of whether
specific information about the state of firing of the presynaptic
networks can be extracted from SN despite its random time
appearance. The variability in both the amplitude and time of
occurrence of the synaptic responses that build up SN pre-
cludes the sole use of conventional methods in solving this
problem.

In this paper, we analyze the fine structure of SN in terms of
timing and amplitude. SN was recorded intracellularly from the
Mauthner (M) cell of teleosts, the command neuron of the
adversive reaction to external stimuli (Zottoli 1977). Specifi-
cally we want to understand how SN reflects the state of the
presynaptic networks and how synaptic junctions are involved
in the transmission of this information. For this purpose, we
examined physiological recordings using analytical tools based
on nonlinear dynamics (for a review, see Abarbanel 1995;
Schreiber 1999) already successfully applied to decipher the
complexity of other neuronal systems (Guckenheimer and Ro-
wat 1997; Pei and Moss 1996; Schiff et al. 1994). Our results
indicate that, surprisingly, the fluctuating properties of syn-
apses govern the degree to which complex activities in presyn-
aptic networks are recapitulated postsynaptically and that this
process is facilitated by a classical paradigm of learning.
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Part of this work has been presented in an abstract form
(Faure and Korn 1998a).

M E T H O D S

Electrophysiological recordings

In the M cell of teleosts, the command neuron of the escape reaction
from adversive stimuli, SN is inhibitory and is generated by two
groups of glycinergic interneurons (Fig. 1A) one of which is driven by
auditory inputs (Faber and Korn 1978). This activity was recorded in
vivo in a quiet auditory environment with KCl-filled microelectrodes
in the M-cell lateral dendrite of anesthetized adult goldfish (Carassius
auratus, n 5 14) and zebrafish (Brachydanio rerio, n 5 16) as
described in Faure and Korn (1997). Because the inhibitory postsyn-
aptic potential (IPSP) in the M cell is hard to detect as a potential
change (Furshpan and Furukawa 1962), Cl2 was iontophoretically
injected through the recording microelectrode until large and stable
full-sized depolarizing collateral IPSPs evoked by antidromic activa-
tion of the M axon (Faber and Korn 1982) were recorded. Thus the
IPSPs comprising SN also appeared as depolarizing potentials (Fig.
1B, top). Recordings were digitized at 12 kHz and filtered at 3 kHz
with a low-pass Bessel filter.

Data analysis

An approximation of the time derivative of the recorded signal was
calculated using first differences. The peak amplitudes and times of
occurrence of the resulting upstroke “spikes” constitute the signal that
was subjected to further analysis. These spikes could be easily re-
solved against the background noise. The spike train was sieved by
ignoring all events whose amplitudes fell below a specified threshold,
u. Thus the spike sequence submitted for further analysis depends on
both the signal itself and the imposed threshold.

The derived trains were examined with several techniques. Inter-
spike event histograms were constructed using a kernel-based density
estimator (Parzen 1962). The power spectrum of the spike point
process was estimated using the discrete-time Fourier transform of the
12 kHz signal set equal to 1 at the time of events and 0 elsewhere.

Nonlinear structures in the spike trains were examined graphically
using return maps, also referred to as Poincare´ maps (PMs) (Faure and
Korn 1997, 1998b; Garfinkel et al. 1992). The PMs were constructed
by scatter plotting each interval between two successive eventsI(n 1
1) versus the previous oneI(n). Note that in all maps presented in this
report, each point corresponds to consecutive pairs of intervals (I1, I2)
among three IPSPs. That is for the first data point of the illustrated
series,I(n) 5 I1 andI(n 1 1) 5 I2, whereas for the second one,I(n) 5
I2, I(n 1 1) 5 I3, and so on.

Quantitative measurements of possible nonlinear determinism, or

FIG. 1. Experimental network and illustration of the threshold method.A: Mauthner (M) cell’s inhibitory pathways with
commissural interneurons (Comm.) activated via VIII nerve fibers and the recurrent collateral (Coll.) pathway.1 and2, excitatory
and inhibitory connections, respectively.B, top: sample of synaptic noise (SN) recorded at a fast sweep speed with consecutive
inhibitory postsynaptic potentials (IPSPs) observed as depolarizing events due to the Cl2 loading and indicated by dots [V(t)].
Bottom: corresponding time derivative [dV(t)/dt]. Note that the upstroke spikes can be easily distinguished from the background
instrumental noise delineated by - - -.C, 1and2: derivative of a segment of SN recorded at a slow sweep speed; spike events each
corresponding to a differentiated IPSP were selected by a thresholdu (- - -). C1: intervals between each detected event (In) and the
next one (In11) were successively measured (●, top line) for further analysis.C2: as the threshold was lowered, more events were
incorporated in the time series (E).
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otherwise stated of the degree to which the studied signals can be
distinguished from random processes, were made as explained in
APPENDIX A.

Modeling

A mathematical representation of the presynaptic networks and
their dynamics consisting of four coupled model interneurons was
built following Hindmarsh and Rose (1984) and Rose and Hindmarsh
(1985). In this physiologically relevant and widely used model (Abar-
banel et al. 1996; Hansel and Sompolinsky 1992; Keener and Sneyd
1998), eachneuron i 5 1, 2, 3, 4 is characterized by three time-
dependent variables:xi, the membrane potential;yi, a recovery vari-
able; andzi, a slow adaptation current. Let

dxi

dt
5 yi 2 xi

3 1 3xi
2 2 zi 1 I 0 1 I i (1)

dyi

dt
5 1 2 5xi

2 2 yi (2)

dzi

dt
5 r @Si~xi 2 Cx! 2 zi# (3)

whereIi is the external current intocell i, I0 is the injected current,Cx

the voltage threshold for spike generation,Si is the scale of the
influence of the membrane voltage on the slow dynamics, andr is the
time scale of the slow adaptation current. Depending on the values of
these parameters, the individual neurons may be in a steady state and
generate a periodic low-frequency repetitive firing (LFRF), chaotic
bursts, or a high-frequency firing. In our tests, a LFRF was obtained
with I0 5 3.281,r 5 0.0021,Cx 5 21.6, andSi was in the range of
[2.9–3.3]. For each neuron,Si was chosen to set fire at one of the
frequencies detected by our analysis of experimental data.

Synapses linking neurons were formalized as

I i 5 2 O
j51

N

gin~t 2 tj!~xi 2 Ein! (4)

whereIi is the total synaptic input toneuron i, Nthe total number of
inhibitory synapses established on their target by the modeled neurons
(see diagram of Fig. 7A), Ein is the reversal potential of the inhibitory
current (here set to23), and tj is the arrival time of a presynaptic
spike. The latter induced a conductance changegin(t) having a time to
peak, ttp5 1 ms and a decay time,t 5 6 ms, corresponding to
physiological values determined experimentally at M cell’s inhibitory
glycinergic interneurons (Faber and Korn 1978, 1982; Korn and Faber
1976).gin(t) was modeled with an alpha function according to Wilson
and Bower (1989). The equations were solved with time steps of
0.001 ms, using a fourth-order Runge Kutta scheme that ensures that
all interesting variations in the dynamics are represented (Abarbanel
et al. 1996). Solutions were desampled to produce time steps5 0.05
ms.

Simulations produced different network behaviors depending on
the value ofgin 5 gin(t 5 ttp). These were synchronized antiphase
bursts of action potentials for strong coupling, i.e.,gin $ 10, asyn-
chronous and intermittent firing for intermediate coupling 3.5# gin #
10, and continuous firing of the neurons with slight fluctuations
around a mean frequency for small coupling values such asgin # 3.5.

Simulations for this paper corresponded to the third case.

Induction of LTP

LTP of M-cell inhibitory synapses was produced by trains of
sounds delivered by a loudspeaker placed in the vicinity of the fish (50
ms, 500 Hz, and 75 dB) repeated every 4 s over 3 min (Oda et al.
1998). As in previous studies (Korn et al. 1992; Oda et al. 1995), the

method for assessing the resulting increase of inhibitory synaptic
strength was based on measurements of the reduction in the anti-
dromic spike height due to the inhibitory shunt. Since this action
potential propagates passively into the soma (Furshpan and Furukawa
1962), any conductance change can be calculated asr9 5 (V/V9) 2 1,
whereV andV9 are spike amplitudes in the absence and presence of
inhibition, respectively. This expression represents the ratio (or frac-
tional conductance)GIPSP/Gm, the two terms being the inhibitory and
resting conductances, respectively (Faber and Korn 1982).

R E S U L T S

In previous studies, we have shown that nonrandom patterns
can be observed in SN (Faure and Korn 1997, 1998b), but their
detailed organization has not been elucidated despite their
striking appearance in the form of well-delineated triangles in
PMs. Thus several questions have been addressed in the
present study. The first was to identify the classes of dynamical
systems and related synaptic events that can produce such
geometric figures. The second was to determine what can be
inferred about the functional organization of the presynaptic
networks that generate the recorded SN. This led us to inves-
tigate how the firing patterns of these networks are transferred
to postsynaptic cells. The overall conclusion of this investiga-
tion is that even though synaptic transmission is probabilistic,
SN is a true signal that offers insight on the state of firing of the
presynaptic networks.

Periodic components in SN

The recorded signalV(t) showed large oscillations made of
successive inverted IPSPs with a magnitude up to several
millivolts (Fig. 1B, top). The time derivative dV/dt of this
signal provides an index of the onset and size of each event: the
beginning of an IPSP was apparent as a rapid increase in slope
reaching a maximum during the rising phase of the synaptic
potential (Fig. 1B, bottom). The size of the resulting spike was
proportional to that of its parent IPSP.

Figure 1C illustrates the basic method used for this study.
Subsets of events were selected, according to their amplitudes,
by a thresholdu in such a manner that as this threshold was
lowered an increasing number of events was included in the
resulting time series. The use of multiple-threshold levels to
produce corresponding trains of events derived from the same
dV/dt recording (Fig. 2A, 1 and 2) allowed us to take into
consideration the information contained in both their timing
and relative amplitudes.

For example, the distribution of interspike intervals (ISI)
obtained with the events which crossed the highestu (5u1)
were multimodal (Fig. 2B1). This confirmed their regular pe-
riodicity (see also Faure and Korn 1997), which can also be
evidenced with autocorrelations (Hatta and Korn 1999). But
for lower u, this periodicity was blurred, and time intervals
possessed no obvious structure when the lower-amplitude IP-
SPs were taken into account (Fig. 2B, 2 and3).

Power spectra of the spike point process showed additional
organization of the trains. In the illustrated case, even atu3
(Fig. 2C), there was a broad peak between 60 and 80 Hz. This
result was interesting but difficult to interpret. The simplest
explanation, that the events were approximately periodic with
a period of roughly 12–16 ms, was clearly ruled out by the ISI
histogram (Fig. 2B3), which shows that interspike intervals
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(ISIs) were typically less than 10 ms. Another interpretation,
which as shown in the following text is correct, is that this train
comprised several interwoven periodic components. Unfortu-
nately, such a structure is difficult to deduce from the power
spectrum since there are few objective criteria to count the
number of peaks particularly when drifts in frequencies may
confound the situation. Furthermore power spectra are insen-
sitive to phase relationships and therefore cannot provide in-
sights into the relationship between oscillators that is typically
a nonlinear phenomenon.

In contrast the PMs showed a highly structured pattern. At a
high-amplitude threshold,u1, the IPSPs were strongly periodic.
This appeared (Fig. 3A1) as a small circular cloud: each ISI
was followed by an interval of approximately the same dura-
tion corresponding, in the illustrated experiment, to a principal
frequency, fp, the value of which (60 Hz) was the same as that
of the main peak in the ISI histogram of Fig. 2B, 1 and2. At
u2, more events were included in the PM which showed a
triangular (Faure and Korn 1997) or, better stated, a signal-flag
pattern. The summit of this motif was centered on fp. This
striking figure was observed in 70% (i.e., 21/30) of the exper-
iments where SN could be recorded in stable conditions. At
this level there was also an outlined space filled on the lower
left triangle (Fig. 3A2), and atu3 there was only the lower left
triangle (Fig. 3A3).

A systematic search was carried out to determine if other

periodic components were buried in SN. For this purpose,
events associated with fp were subtracted from the time series
isolated byu3 (Fig. 3B1), and the maps were reconstructed with
the remaining events. This procedure disclosed a distinct sec-
ond signal-flag pattern, centered on a secondary frequency fs.
In this experiment, fs was equal to 68 Hz (Fig. 3B2), and
overall we found fp, fs in the 12 of 21 experiments where
additional triangles could be revealed.

These results suggest that the IPSPs in SN are organized in
a primary periodic train of high-amplitude and frequency (fp)
and in a second train of somewhat lower amplitude and fre-
quency (fs). As shown in the following text, other intervening
and smaller events correspond to at least a third oscillator, (ft).

Interpretation of the PMs

A simple theoretical analysis consistent with experimental
data helps to interpret the signal-flag pattern. Consider a se-
quence of events (Fig. 4A) consisting of evenly spaced IPSPs
(labeled P) having an amplitude greater thanuP and period of
pP and another sequence of smaller events (labeled S) having
an amplitude nearuS and periodpS, which are intermingled
with the larger P components. The sequences that are used to
construct the ISIs depend on the setting of the amplitude
threshold. Overall, maps constructed with interwoven periodic
S and P events and with some missing S will produce a PM
with points scattered on the four lines shown in Fig. 4B.

Specifically, when the threshold is betweenuP anduS, only
the P events will be detected. The resulting sequence can be
denoted PsPsPsPs, where capital letters stand for events that
are above the threshold. At this level, the sequence of ISIs will
bepP,pP,pP, . . . and the PM will be a single dot at the position
marked PsPsP. A small amount of random variations inpP will
broaden this dot into the type of the circular cloud seen
experimentally.

At a lower threshold, nearuS, some S events will be detected
and the resulting sequence of events is PSPSPsPS. The ISI
comes from consecutive triples, e.g., PSP, SPS, or SPP. Pairs
of intervals from PSP triples, e.g.,I1,I2 and I3,I4, in Fig. 4A
span the periodpP, and they appear in the PM along the
diagonal line markedpP. For SPS triples, the dot can be
anywhere in the square bounded bypP, but when the S-type
events are periodic, SPS triples lie on the diagonal line corre-
sponding topS. When S events fall belowuS, triples will be of
the form PsPS, SPsP, or PsPsP. These appear on the vertical or
horizontal lines of the signal-flag pattern or at their intersec-
tion, respectively.

Finally, PMs constructed with thresholds belowuS also
exhibit points in the lower left triangle already evident in Fig.
3A, 2 and3. These points correspond to the events denoted T
that were also assumed to be part of a periodic sequence.

A careful examination of the experimental PMs confirmed
this interpretation. For example, the principal and secondary
periodspP 5 16.25 ms andpS 5 14.4 ms detected at the
summit of the triangles in Fig. 3,A2andB2,were also apparent
at the border of the highest density areas when the PMs were
converted into density maps (Fig. 4C). Applying the same
protocol to the triangle obtained after excluding P events
disclosed a third periodpT 5 13.3 ms at the lower edge of the
signal-flag pattern (Fig. 4D). The values of these three periods

FIG. 2. Classical 1st- and 2nd-order analysis of SN.A1: inhibitory SN with
inverted IPSPs, 2 of which are indicated by3. A2: time derivative of this
signal with different levels of thresholds (u1 2 u3) used to select progressively
smaller events.B, 1–3: probability density functions (PDF) of time interval
histograms from a 10-s segment of recording.B1: at thresholdu1, a dominant
periodicity of 16.4 ms is revealed.B, 2 and3: at u2, the periodicity tends to
disappear (B2) and the interevent histogram finally becomes suggestive of a
random process (B3). C: power spectrum of the point process of detected
events atu3, with a peaky distribution suggesting several superposed time
scales (but see text for comments). Some of them (indicated by3) were later
identified in the return maps (see Fig. 5,C andD).
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helped to make sense of some of the peaks revealed by the
power spectrum of Fig. 2C (arrows).

Are the presynaptic oscillators coupled?

The experimental PMs, corroborated by the power spectra,
indicated that activities in the presynaptic interneurons that gen-
erate SN are rhythmic. However the linear signal-flag structures in
the experimental PMs were broader than those expected if the P
and S events were exactly periodic (in which case they would lie
exactly on the 4 lines of Fig. 4B). Two explanations were possible.
One was thatpP, pS, andpT were independent of each other and
varied randomly. The other was that, as in other neuronal systems
(Keener and Glass 1984; Pei and Moss 1996), the parent oscilla-
tors of the P, S, and T events are coupled to one another, thus
producing fluctuations in the periods.

An analysis of the time intervals between the IPSPs com-
prising SN was carried out to distinguish between three distinct
alternative possibilities. First, if the two oscillators P and S are
independent, S events will occur with equal probability at any

position in PP intervals (Fig. 5A, top). Second, if the oscillators
are phase locked, for example by a strong synaptic path with a
fixed delay, PS intervals will remain constant (Fig. 5A, middle).
Finally, in case of a functionally weak synaptic coupling, the
oscillators exert complex influences on each other and depend-
ing on the previous timing of P and S events, the phase of a
subsequent one will be advanced, retarded, or remain the same
(Fig. 5A, bottom).

When PSPSP sequences corresponding to periodspP andpS

were extracted from SN and ranked as in Fig. 5B1, we found that
intervalsP1P2 andS1S2 were strongly correlated and that S events
were not homogeneously distributed between P ones as would be
the case if the oscillators were independent. This phase relation-
ship was quantified, as illustrated by the plot of Fig. 5B2 (black
circles) in which the regression line shows a statistically signifi-
cant (P , 0.001) rejection of the null hypothesis that the SS and
PS intervals were independent. Furthermore when the largest,
though unclear (due to their timing) S events were incorporated in
the analysis (Fig. 5B2, blue circles), the slope became even more

FIG. 3. Analysis of SN with Poincare´ maps (PMs). Experimental maps obtained with the 10-s sample of SN (same experiment
as in Fig. 2).A1: periodic pattern at high-thresholdu1 with data points centered around a principal frequency (fp) of 60 Hz.A2:
at u2, a signal-flag pattern emerges, with its summit located at fs.A3: subsequently this geometric form tends to vanish. Note the
lack of interval data less than 0.5 ms, indicating a lockout, i.e., a lower bound of the detection of 2 closely spaced consecutive events
(seeDISCUSSION). B, 1and2: extraction of a 2nd periodic component.B1: events of the time series showing a sample of the IPSPs
selected byu3 and used to construct the map ofA3. Some of these events (●) were already detected atu1 (middle) but their removal
resulted in a new series in which small IPSPs (E) were predominant (bottom). B2: the return map obtained with this remaining time
series disclosed a hidden signal-flag pattern centered on a secondary frequency fs (568 Hz).
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pronounced. Thus the plot of Fig. 5B2 can be taken as indicating
that the S events did not occur during the first 20% of the PP
cycle, SS intervals were dramatically prolonged when a S event
occurred in the first half of the PP interval, and these intervals
were shorter when the S events occurred later in the PP sequence.
These three forms of mutual interaction are consistent with a weak
coupling between oscillators.

This coupling was not strong enough to phase-lock the S and
P events to a stable and constant interval, but it could produce
short sequences that exhibited almost constant phase relation-
ships between the P and S oscillators. Advance and retreat
patterns (ARPs), similar to those seen previously (Faure and
Korn 1997), were observed in the PMs (Fig. 6A). These
stemmed from the slow drift in phase between S and P events.
When the two oscillators were half a cycle out of phase they
appeared as a fixed point (Fig. 6A, 2) but since they were not
phase locked, this point was unstable and the next points
labeled 3 and 4 in the PM diverged along a well-defined path
resembling that of unstable periodic orbits (UPOs) often asso-
ciated with chaos (So et al. 1998). Other types of period 1, 2,
and 3 orbits were also found (Fig. 6B).

These different configurations correspond to the various
sequences of time intervals between events outlined in Fig. 6C.
They stress the diversity of temporal structures contained in
SN. The period-1 orbits correspond to a single interval between
successive events. Period-2 orbits correspond to two different
alternating intervals, while period-3 ones include three distinct
sequential repeated intervals and these iterations can be gen-
eralized ton. The construction of the ARPs is more complex:
the successive intervals converge toward and tend to stabilize
around a fixed one, but they rapidly escape following distinct
paths as illustrated in Fig. 6A.

Finally it should be stated that the measures of determinism,
i.e., the percentage of determinism (%det) and them(e) entropy
(see details inAPPENDIX A), were statistically significant in 19 of
the 21 experiments when compared with surrogates, confirm-
ing the nonlinear properties of SN.

Complex patterns in presynaptic networks

Numerous reports have demonstrated that coupled neurons
can behave as oscillators and generate a vast repertoire of

FIG. 4. Construction of the different parts of the signal-flag pattern.A: the notation is explained with a schematic dV/dt time
series comprising 3 classes of periodic IPSPs, labeled P, S, and T according to their parent frequency. Events below a given
threshold of analysis are in lower case.B: interpretation of a theoretical map using the same notation as inA to designate the origin
of the data points lying along the different arms of the triangle. LinespP andpS mark the diagonals determined by the principal
and secondary periods. Points below concern intercalated T’s.C: evidence that the principal (pP 5 16.25) and secondary (pS 5
14.4) periods fit the highest density of points on a PM constructed with a set of 6 successive time series corresponding to 10 s of
recording each (same experimental data as for Fig. 3A2). The density was calculated by partitioning the space in 503 50 square
areas (i.e., with a resolution of 0.423 0.42 ms) and by counting the number of points in each of these boxes. Areas in blue, green,
red, and yellow indicate regions containing less than 4 points, between 4 and 8, 8 and 12, or more points, respectively.D: same
protocol as forC applied to the experimental data of Fig. 3B2. Note that the return map is consistent with the 2-period theory, but
shifted: the slow periodicity is nowpS 5 14.4 ms and a faster period,pT 5 13.3 ms is unmasked. Here colors pertain to areas
containing less than 2, between 2 and 4, 4 and 6, or more points, respectively.
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dynamic responses, ranging from periodic to chaotic firing
patterns (Abarbanel et al. 1996; Borisyuk et al. 1995; Hansel
and Sompolinsky 1992; Rinzel et al. 1998). Since periodic
events compatible with the involvement of coupled presynaptic
“oscillators” were detected in SN, we assumed that the role of
the M cell in the oscillations is simply a read-out function, and
we investigated whether coupling between inhibitory interneu-
rons terminating on the M cell can produce complex patterns
similar to those observed in actual data. We found that a
deterministic model, which does not involve random fluctua-
tions, can reproduce all the major features of the signal-flag
geometry, including the broadening of the diagonal PSP and
SPS lines of Fig. 4.

Four interneurons were modeled as described inMETHODS.
They were linked by inhibitory synapses (Fig. 7A) generating
IPSPs having a fixed latency and a constant amplitude to
eliminate all sources of randomness. Values of this model’s
parameters were set to obtain low-frequency periodic patterns

of firing of the same order than those of the different classes of
IPSPs revealed in PMs.

Figure 7B shows that each of the neurons produced trains of
action potentials that were roughly periodic but fluctuated
around a given mean period. Such deterministic fluctuations
might account for the complexity of the experimental time
series (see following text). However, the sum of the impulses
produced by the four neurons took the undefined form of a
random process and the corresponding return maps (Fig. 7C)
were similar to those obtained by plotting events selected in
actual data by a low threshold, as in Fig. 3A3.

Since most highly structured PMs were those constructed
with intermediate thresholdsu2 and suggested the interplay of
rhythms from two oscillators, we focused our attention on the
behavior of two of the modeled neurons alone. For example, in
the case of Fig. 8A, the two investigated cells fired with a mean
frequency of 57 and 63 Hz, respectively. Yet, the intervals
between the action potentials in the summed train were irreg-

FIG. 5. Interactions between the periodic
components.A: schemes of the possible tim-
ing of P (red) and S (black) events generated
by 2 oscillators, depending on their mode of
interaction. The S events are located any-
where (top) or at fixed distanceDf (middle)
in the PP intervals, if the oscillators are inde-
pendent, or if they are phase locked. In both
cases,pP andpS intervals are constant. If the
oscillators are weakly coupled (bottom), they
exert more complex effects on each other and
successive events, can be advanced or de-
layed, or remain unaffected in directions in-
dicated by arrows, andpP and pS vary (see
also text).B1: evidence for coupling between
periodic IPSPs (same data as for Fig. 3–5).
Series of 5 consecutive IPSPs, each corre-
sponding to an unambiguous and almost reg-
ular PSPSP sequences are ranked (fromleft to
right) according to the value of the interval
between the first P and S events of the se-
quence (see the diagrambelow). Note the
strong correlation between the P1S1 and P2S2

intervals.B2: ratio of the S1S2 intervals as a
function of their position in the P1P2 inter-
vals, parametrized by the ratiof 5 P1S1/
P1P2. Note that largerf are associated with
shorter SS intervals [red linen 5 232 series
(black points), slope5 23 ms,P , 0.001,
t-test]. If less regular sequences (blue sym-
bols) are incorporated, this relationship be-
comes even stronger (n 5 301 series, slope5
210.8 ms,P , 0.001).
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ular with phase shifts analogous to those produced by weakly
coupled oscillators.

Return maps constructed by plotting these intervals exhib-
ited a well-delineated motif made of series of points distributed
aroundpP andpS (Fig. 8B1). That is, they were distributed in
the same region of the base of the signal-flag pattern obtained
experimentally. One can also note in the PM a few distant

points (crossed arrow) that mark the intervals between action
potentials occurring before and after a pair of synchronous
ones (Fig. 8A, crossed arrow). They are the precursors of the
summit of a complete signal-flag pattern.

The scattering of points aroundpP andpS indicates that the
weak coupling between the oscillators produced a deterministic
dispersion of the time intervals between events (Fig. 8B1),
although the simulations did not incorporate external sources
of noise. These deterministic fluctuations produced ARPs that
resembled those observed in the experimental data (not shown)
and period-2 orbits (Fig. 8B2).

Role of synaptic properties in the transmission of
presynaptic patterns

The various components of the signal-flag patterns were all
evident in the same train because some types of events were
sometimes above and sometimes below threshold, the fluctu-
ations of their amplitudes allowing the signal-flags to convey
information about the periodicities of each of the oscillators. In
addition the distribution of amplitudes allowed for gradual
transitions among the types of signal-flag patterns as the de-
tection threshold was lowered with, consequently, a reduction
in the number of failures of detection. Therefore by examining
the fraction of missed events at each level ofu, we could
approximate the extent of the overlap of some IPSPs produced

FIG. 6. Further evidence for a weak coupling
between the presynaptic oscillators.A: advance
and retreat patterns (ARPs,n 5 5) with stable
(St) and unstable (Un) manifolds determined by
sequences of points that converge toward, and
then diverge from, the period-1 orbit (here la-
beled 2), in the indicated order.B: map from the
same experiment (shaded). Circles mark multi-
ple occurrences of period-1 orbits (orange,n 5
30, at least 4 iterates for each occurrence), pe-
riod-2 and -3 orbits (red,n 5 109, black,n 5 35
respectively, at least 6 iterates).C: schematic
classification of the major patterns found in SN
(see text for explanations) that account for the
dynamical patterns shown inA andB. Plots of
interval values (ordinates) against interval num-
bers (abscissa) in the corresponding sequence of
events represented by vertical bars (insets). Note
that in the case of ARPs, the time intervals
alternate around a fixed point (dashed line): they
first tend to decrease and then to increase se-
quentially.

FIG. 7. Model of activity in a presynaptic network of inhibitory cells.A:
diagram of the formal neurons (labeled 1–4), coupled by inhibitory chemical
junctions (2, black dots) and set to fire at 57, 63, 47, and 69 Hz, respectively.
B: sample of membrane voltage produced by the 4 cells (labeled 1–4),
illustrating the resulting spike trains. The summed network output [S(1,4)] is
shown in the bottom line, with the spikes transformed into upstroke bars of
amplitude 1.C: return map constructed with the summed series.
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by each oscillators (APPENDIX B1). The amplitude fluctuations of
these IPSPs were consistent with an involvement of synaptic
junctions. We found that indeed, connecting the formal inter-
neurons with terminal synapses that “released” transmitter in
quanta according to principles established at chemical junc-
tions allowed the model to reproduce the hierarchical features
of the PMs.

Chemical transmission is governed by two parameters,n and
p, where n represents the population of basic “quantal units”q
capable of responding to a nerve impulse, andp their average
response probability (Del Castillo and Katz 1952). Then the
product np is the so-called mean quantal content, which is
equal to the average number of quanta released by a given
junction during successive trials, while the productnpq,where
q is the size of a quantum (set to 1 in our simulations),
determines the synaptic strength. Since at central synapses
transmitter release can follow a simple or a compound bino-
mial statistics, wherep is the same or is different for every site
of release established by a neuron on its target (for a review,
see Korn and Faber 1991; Redman 1990), we tested these two
models in this study.

First, a simple binomial model, previously shown to account
for the amplitude fluctuations of IPSPs evoked in the M cell by
its presynaptic interneurons (Korn et al. 1982), was used with

values for the termsn andp in the range of those derived in
earlier experiments (Korn et al. 1986).

When the neurons had the same quantal contentnp, all
IPSPs fluctuated in the same range (Fig. 9A, 1 and2) and the
signal-flag pattern did not appear in the PM (Fig. 9A3). This
result was easily explained by the fact that any threshold
detected the same proportion of IPSPs regardless of their
parent cell and despite small changes at the extremities of the
inverse cumulative densities of the amplitude events (Fig. 9A2,
2). These slight discrepancies were due to small differences in
the coefficient of variation (CV) of the amplitude distributions
of the IPSPs produced by each cell. Similar conclusions were
reached with other runs, whatever the values attributed ton and
p of each interneuron, as long as the four modeled cells had an
identical quantal content (a justification of this rule, which also
pertains for compound binomial statistics, can be found in
APPENDIX B2).

When the model was modified to include differentnp prod-
ucts that distinguish presynaptic neurons from each other
(Korn et al. 1986), the signal-flag pattern was restored in the
maps and the ARPs reappeared, as well as period-2 orbits (not
shown). This result is illustrated in Fig. 9B, 1–3,for which the
“neurons” had a quantal content of 13.3, 6.2, 3.7, and 1.86,
respectively. Again, this result can be easily explained. As

FIG. 8. Deterministic patterns in modeled presynaptic neurons.A: trains of action potentials produced by simulatedcells 1and
2 (thick line) of the network, showing variations of time intervals resulting from weak coupling between these neurons. Symbols
above spikes correspond to changes in their relative timing. The intervals between spikes of the 2 cells can increase (up arrow),
decrease (down arrow) or remain unchanged (equal sign) when compared with the preceding 1. The crossed arrow indicates
synchronous spikes.B1: return map (shaded) constructed with the intervals between all presynaptic “action potentials” produced
by cells 1and2. Note the broadband around the diagonal linespP 5 17.5 andpS 5 15.8 ms, arising from the purely deterministic
coupling of the involved oscillators.B2: multiple occurrences of period-2 orbits in the 2 regions (black and gray dots) delineated
by circles.
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shown by Fig. 9B, 1 and2, at intermediate values,u identified
preferentially IPSPs produced by the first two cells. For exam-
ple, whenu was set to select the same proportion of events (i.e.,
.42%) as in Fig. 9A2, 100% of events fromcell 1 and 60%
from cell 2 were suprathreshold, against only 10 and 0% from
cells 3and4.

Second, the model was implemented with terminals “releas-
ing” according to nonuniformp’s. As illustrated in Fig. 10, the
results were almost indistinguishable from those described in
the preceding text. That is, a signal-flag pattern, ARPs andperiod-2
orbits became only apparent in PMs when thenpproducts were
different. This finding was not surprising since the distribution
histograms of IPSPs modeled by a compound binomial are
roughly similar to those from a simple binomial distribution but with
a smaller CV than with a simple binomial statistics.

Finally it should be noted that in these simulations values of
n andp were inversely correlated as experimentally observed at
M cell’s inhibitory connections (Korn et al. 1986). However,
this need not be the case (seeAPPENDIX B2).

Experimental validation

To verify the involvement of synaptic efficacies, we con-
ducted a series of experiments, taking advantage that the

strength of the M cell’s inhibitory synapses are modified in
vivo by LTP, a classical paradigm of learning that can be
induced in teleosts by trains of sounds emitted in the vicinity of
the fish. This form of LTP is due to an increase of the
presynaptic parameter of releasep, while n and q remain
unaffected (Oda et al. 1995). As in previous reports, the po-
tentiation of the inhibitory synapses was quantified using a
parameterr9, or fractional conductance, which defines the
degree of the inhibitory shunt (seeMETHODS).

As expected the amplitude of IPSPs comprising SN was
increased during LTP (Fig. 11,A1andB1). Furthermore return
maps constructed with a high-threshold (u2) were markedly
different before and after the conditioning sound trains (Fig.
11, A2 and B2). That is, LTP strengthened the two-oscillator
triangular pattern in the PM, as further evidenced by compar-
ing the PMs constructed with a lower threshold,u92 (Fig. 11,B2
andC) and by the 8% increase of the %det (Fig. 11D). On the
other handpP andps remained the same (Fig. 12), suggesting
a stability of the dynamics in the network.

In four experiments,r9 was increased by 296 8.1%
(mean6 SE) after the learning protocol, indicating LTP of the
commissural synapses (Korn et al. 1992), and the %det was
enhanced by 14.36 2.1%. Adding three other experiments,

FIG. 9. Contribution of synaptic properties to the transmission of presynaptic patterns.A, 1–3: analysis of postsynaptic signals
produced by uniform junctions.A1, top: same model and parameters as for Fig. 8 but implemented with synaptic terminals labeled
1–4, having different release parameters, i.e.,n 5 12, 14, 20, and 25 andp 5 0.52, 0.44, 0.31, and 0.25, respectively, and the same
quantal content,np. Bottom: superimposed fluctuating IPSPs (n 5 10) of statistically equal random sizes generated by each of the
neurons. Note that these IPSPs are equally detected by anyu. A2: inverse cumulative event density, i.e., density of events with
amplitudes greater than a given size expressed in number of quanta (x, ordinates) or otherwise stated, percentage of detected events,
as a function of the number of available quanta (abscissa). The 4 curves are almost similar (except at their extremities—2—see
text).A3: the interevent intervals appear as random in the PM.B, 1–3: same presentation as in the preceding text but with terminal
synapses having different release parameters, i.e., fromleft to right, n 5 38, 20, 8, and 3 andp 5 0.35, 0.31, 0.47, and 0.62,
respectively, and distinct quantal contents. Thusu detects preferentially IPSPs from oscillators 1 and 2 and the corresponding PM
exhibits a signal-flag pattern centered on the frequency of the largest events (fp).
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during which LTP was only assessed by comparing the ampli-
tude of IPSPs (to avoid further modifications of SN by control
sounds), this value became 11.36 1.8%. In another cell, the
sounds produced no LTP and the determinism was unchanged.

D I S C U S S I O N

Taken together these results suggest that the information
contained in SN permits the dynamics of the presynaptic net-
works to be reconstructed. This information is contained both
in the intervals between IPSPs and in their amplitudes.

Our data can be generalized as follows. Several combina-
tions of P and S events in triplets, some of which result from
failures to detect events, are necessary to construct a complete
signal-flag pattern. This prerequisite is guaranteed by the “sep-
arating power” of the largestnp products at the terminals of
neurons that generate the SN. On the other hand identified
dynamical sequences (ARPs, period-n orbits and other signs of
determinism) are found at the base of the signal-flag pattern,
and the clarity with which they appear is related to the emer-
gence of both P and S events in the time series. This second
condition evidently imposes an irreducible separation between
the np products (seeAPPENDIX B2) that allows the presynaptic
dynamics to become predominant in the SN.

Validity of the coupling hypothesis

Two important issues had to be considered before accepting
that the coupling between presynaptic interneurons accounts
for the patterns observed in SN.

First, might we have incorrectly classified as P, S, or T
activities? Our methodology for displaying the coupling be-

tween the P and S oscillators relies on the detection of events
and their classification as P, S, and T. Thus any failure of
detection or classification that is related to the timing of the
spikes could artifactually influence the display of coupling.
However, when constructing Fig. 5B2, we remained conserva-
tive and considered only events (shown in black) belonging to
unambiguous PSPS quartets. P, S, and T events were selected
using a criterion that combines amplitude with timing infor-
mation. Specifically, P events were obvious and, despite pos-
sible confusions between S and T events due to overlap of their
size, most S ones could be identified as such in Poincare´ maps
since they appeared on the diagonal line corresponding to the
S period. Second, how reliably could we detect closely spaced
events? Events closer than a given time separation were not
distinguished in the time series. This issue was important
because a sufficiently long lockout can produce the illusion of
coupling. But this lockout was approximately 0.5 ms, and there
are few points with shortf in Fig. 5B2 simply because there
were few PSPS quartets. Theoretical analysis shows that the
0.5 ms lockout is too short to produce artifacts mimicking the
pattern in Fig. 5B2. In confirmation, simulations with uncou-
pled S and P oscillators show virtually no coupling even with
lockouts as large as 3.5 ms.

Two additional arguments reinforced the hypothesis of cou-
pling. Data points in the PMs were not uniformly distributed as
they would be if the variability of each frequency was random
and, as demonstrated by combined electrophysiological and
histological studies (Korn et al. 1990; Triller and Korn 1981),
commissural inhibitory interneurons presynaptic to the M cell
are linked by chemical inhibitory synapses.

Other simulations can produce triangular maps. Such is the

FIG. 10. Analysis of IPSPs produced by nonuniform junctions. Sameg as for Fig. 9 but with different probability of release at
each terminal (n) of simulated neurons.A, 1–3: all neurons have the same quantal content.A1: histograms ofp values (abscissa)
in the terminals ofneurons 1–4(from top to bottom) with indicated (n). Meanp values were 0.52, 0.44, 0.31, and 0.25, with a
variance of 0.32, 0.45, 0.55, and 0.6, respectively.A2: inverse cumulative density of events and thresholdu with indicated
proportion of the detected events (same comments as for Fig. 9A2). A3: corresponding PM with random distribution of interevent
intervals.B, 1–3: same presentation as forA, 1–3,but with terminals having different quantal contents. The meanp were 0.35, 0.31,
0.47, and 0.62, and the variances were 0.63, 0.56, 0.45, and 0.32, respectively. Note the signal-flag pattern in the PM.
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case for models based on one oscillator producing large events
intercalated with smaller ones occurring at random (not shown)
or on several independent and noisy oscillators, each making
events of different amplitudes, and a fixed level of detection.
However when examined in detail, such maps do not exhibit
the fine temporal structure (periodic orbits, phase relationships)
found in the SN recorded from the M cell.

Finally could nonlinearity in synaptic transmission and/or
the responsiveness of the M cell to its inputs create the
observed patterns? While this is conceivable, the most ob-
vious sources of nonlinearity so far identified in the M cell
system are unlikely to be involved. In particular the effects
of presynaptic depression that reduces IPSP amplitudes at
high rates of presynaptic firing are stabilized at frequencies
more than 33 Hz (Korn et al. 1984). In confirmation no
correlation was found between the amplitudes of the suc-
cessive P events or between their amplitudes and timing. At
the postsynaptic level, we investigated whether the nonlin-
ear summation of potential change (Martin 1955) and, more
importantly, the voltage dependence of the decay of IPSPs
(Faber and Korn 1987) did affect the size of overlapping
events. Such seemed not the case since the amplitude dis-
tribution of S events was the same during the first half of the

PP cycle (which includes the falling phase of the P events)
and during the second one.

Neuronal correlates of the presynaptic oscillators

Nonlinear deterministic components have been identified in
SN (Faure and Korn 1997, 1998b), and it is well established
that coupled oscillators can generate similar patterns, including
chaotic ones (Glass and Mackey 1988). The frequencies of the
oscillators unmasked in this study are consistent with those of
the periodic components already noted in the M cell’s inhibi-
tory SN (Faure and Korn 1997; Hatta and Korn 1999), which
were in the range of the so-called gamma rhythm observed in
higher vertebrates (Jefferys et al. 1996; Singer 1993).

Anatomical and physiological studies have shown that
there are more than four interneurons in the M-cell presyn-
aptic network with the estimates being in the range of at
least 50 (Faber and Korn 1978; Korn and Faber 1990). Thus
it is surprising that the contribution of a few oscillators can
be distinguished or, in other terms, that the amplitude of the
IPSPs produced by each of these oscillators seems to be
ordered according to their origin. Calculations of the aver-
age size of the P and S IPSPs may help to address this issue.
In the goldfish M-cell system, the size of an inhibitory

FIG. 11. Changes of temporal patterns during
long-term tetanic potentiation (LTP).A1: time de-
rivative of a segment of SN recorded 8 min before
the conditioning sounds (see text).A2: PM obtained
with a high-thresholdu2, showing an emerging
cloud around 68 Hz (suggesting apP of 14.7 ms).B,
1 and 2: same presentation of SN collected 8 min
after the onset of the learning protocol with an
increased number of suprathreshold events and a
triangular map.C: lowering the threshold inA1
from u2 to u92, to match the number of events inB2,
the map still shows a somewhat different signal-flag
pattern.D: pooled values of the percentage of de-
terminism (%det) calculated onn windows of 10 s
each, obtained during the 10 min preceding and the
15 min following the onset (arrow) of the condition-
ing sound trains (vertical bars are SE).t-test signif-
icant (asterisks) at 1%.
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quantum is approximately 1% that of the full-sized collat-
eral IPSP evoked by antidromic activation of the Mauthner
cell axon (Korn et al. 1982). The mean unitary IPSPs
produced by stimulations at 1 Hz of a single presynaptic
interneuron comprise 5.8 quanta (Korn et al. 1986). Further-
more their amplitudes decrease in a known way at increased
stimulating frequencies due to presynaptic depression (Korn
et al. 1984). Based on these values, estimations made in time
series from three goldfish indicated that the P and S IPSPs
were, respectively, six to seven and four to five times bigger
than the average unitary response.

Several hypotheses that have not been tested in this study
might explain this amplitude distribution. One is that these
IPSPs are produced by the firing of a special set of cells, that
of the rather exceptional “superinterneurons,” which evoke
IPSPs of unusually high amplitudes (Korn et al. 1986). The
other is that a number of presynaptic cells might fire simulta-
neously. Two signaling mechanisms already demonstrated in
the organization of the M cell’s inhibitory network could be
involved: one is the chemical coupling between inhibitory
interneurons that has been shown to underlie synchronization
in theoretical models (Jefferys et al. 1996; Traub et al. 1996;
White et al. 1998; Whittington et al. 1995) and in experimental
material (Bragin et al. 1995; Whittington et al. 1995). The
second is that the somata of the commissural interneurons are
linked in teleosts via gap junctions (Korn et al. 1977), which
favor their simultaneous discharge including those of function-
ally related inhibitory cells (Gibson et al. 1999).

Arguments offered inAPPENDIX B3 indicate that our results do
not depend on whether the quanta are issued by synchronously
firing cells or are all from a single presynaptic neuron.

Synaptic properties and the transmission of
deterministic patterns

Analysis of the PMs indicated that the signal-flag patterns
were clearly delineated with maximum values of the measures
of determinism [%det andm(e)] and the largest number of
ARPs, when 99.36 0.32% (n 5 10), 49.76 2.57% (n 5 10),

and 12.16 1.89% (n 5 10) of P, S, and T events were included
in the maps, respectively. These values agree closely with
those of thenp products required for the construction of
“meaningful” maps with models.

We observed in experimental data that the same sequence
of event intervals can produce qualitatively different pat-
terns depending on the level of the threshold used to window
the sequence. Indeed, the probabilistic nature of transmitter
release means that there is a graduated transition between
the different patterns asu is varied. The notion that the
probabilistic componentp is critical here was confirmed by
simulations in which the oscillators had differentn’s but
with p 5 1 at all terminals, reducing the variance tos2 5 0.
This resulted for any level ofu in maps lacking signal-flag
patterns. The nonzero variance that results from 0, p , 0.1
guarantees that multiple components of the patterns shown
in Fig. 4B can be present in the signal flags. The value ofp
sets the relative mixture of these patterns. Changingp, as in
LTP, modifies this mixture.

In this context, the probabilistic aspect of neurotransmission,
whose function in neuronal communication has not been clar-
ified, becomes an advantage rather than a limiting factor (Za-
dor 1998) since it allows synaptic strengths to be adjusted in a
manner that shapes the transmitted information without need-
ing to modify the dynamics of the presynaptic network.

The emergence of the deterministic structures in the postsyn-
aptic cell with multiple inputs is made possible by the nonuni-
form values of synaptic weights and the stochastic release of
quanta. Furthermore the transmission of qualitatively different
patterns in the M cell may allow encoding of a small repertoire
of motor reactions as suggested by the results of LTP which is
known to underlie modifications of the goldfish escape behav-
ior (Oda et al. 1998).

A P P E N D I X A

A deterministic system is one whose complete behavior can be
expressed with an infinite precision in a mathematical description
(usually a differential equation). Then if the initial values of all

FIG. 12. Stability of presynaptic frequen-
cies after induction of LTP. The principal
(pP 5 14.7 ms) and secondary (pS 5 13.3 ms)
periods which fit the highest density of points
were determined, with the method described in
the legend of Fig. 4. Areas in blue, green, red,
and yellow indicate regions containing less
than 2, between 2 and 4, 4 and 6, or more
points, respectively. Here PMs were con-
structed with sets of five successive time series
of 10 s of SN each. Note thatpP andpS were
unchanged after LTP (same experiment as in
Fig. 11).
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variables are known completely, the system’s entire future history is
predictable and can be calculated exactly.

A chaotic system, which often appears at first sight to be random,
is also deterministic, but it displays what is called sensitive depen-
dence to initial conditions. That is, solutions obtained with two
different starting points can be profoundly different: if the initial
conditions are infinitesimally displaced from each other, then the
solutions diverge exponentially. The extent to which they are unpre-
dictable depends on this rate of divergence.

The dynamics of deterministic systems are different in principle
from random processes where prediction is impossible except statis-
tically.

While the presence or absence of a specific form of determinism
was not the focus of this report (for this aspect of the work, see Faure
and Korn 1997, 1998b), that of SN was quantified for two reasons.
The first was to confirm that SN could be distinguished from a random
process. The second was to estimate the modifications produced by
external sensory stimuli. Two parameters were used. Both detect
so-called recurrent patterns, i.e., sequences which approximatively
repeat themselves over time (hidden rhythms). They can be computed
in recurrent plots (Eckmann et al. 1987), which are particularly well
suited for studies of biological processes.

Let x(i) be theith point on the orbit describing a dynamical system
in a d-dimensional space, fori 5 1, . . . ,N. The recurrence plot (RP)
is an array of dots in aN 3 N square, where a recurrent point is placed
at the (i, j) coordinates whenever the embedded vectors (xi, xj),
defined here byxi 5 [I(i), I(i 1 1)] are within a predetermined cutoff
distance (e). The organization of recurrent points into diagonal line
segments of lengthL indicates the parts of the trajectories which are
close (under resolutione) during L successive time steps.

The first parameter was the percentage of determinism (%det)
(Weber and Zbilut 1994), which is the number of dots included in
diagonal line segments divided by the total number of dots in the RP.
The second parameter was the slope,m(e), of the exponential decay of
the histogram of the number of segments of lengthL. As demonstrated
elsewhere (Faure and Korn 1998b), at limits, this slope is an estima-
tion of the Kolmogorov-Sinai entropy.

To confirm the nonlinear properties of the PMs, we constructed
surrogate data. A surrogate is an artificial set constructed from the
original data with constrained statistical properties that depend on the
null hypothesis being tested. The statistical significance of the two
parameters was examined with the null hypothesis that all forms of
determinism found in SN were brought about by the linear properties
(amplitude and frequency distributions) of the signal. For this pur-
pose, surrogates of the time derivative of the membrane potential and
of the raw spike trains, which matched both the amplitudes of the
signals and their power spectrum, were constructed using two distinct
methods despite their possible limitations when applied to time inter-
val series (Schreiber and Schmitz 2000). These were the amplitude-
adjusted method (Rapp et al. 1993; Theiler et al. 1992) and the
iterative surrogate technique (Schreiber and Schmitz 1996), which
involves an iterative refinement of the latter.

A P P E N D I X B

This appendix is concerned with the synaptic properties that can
lead to the the signal-flag patterns. We treat the amplitude of each
event (i.e., of an IPSP in SN) as random and seek to characterize the
amplitude distributions of the P, S, and T events.

Appendix B1: percentages of detection

We need some statement about amplitude distributions of each
class of IPSPs to express their degree of overlap. Since the release
mechanism may obey simple or compound binomial or possibly other
statistics (if the quanta are not released independently), we represent
the probability distribution of the event amplitudes as a gaussian

distribution described by a mean amplitudem and a variances2. We
denote the mean amplitude of the different types of events asmP, mS,
mT and their variances bysP

2,sS
2,sT

2 .
As is conventional for a gaussian distribution, any percentile can be

depicted in terms of the standardizedzmeasure. For example the 2.5th
percentile of a normal distribution lies atm 1 z0.025s. As is found in
standard tables of the Gaussian distribution,z0.025 5 21.96.

The PMs give information about the fraction of events of each type
larger than a selectedu, that is, about the percentiles of the distribu-
tion. So, the number of missed P’s could be assessed in Fig. 3A1 by
computing that of the overlong intervals (withIn or In11 .. pP),
which do not appear on the PMs due to the chosen scales. SincepP

was known, one could interpolate the position of the missing P’s. This
procedure indicated 52 of them inferred among the 566, i.e., 92%,
detected ones.

Generally in our experiments, there was a threshold at which 95%
of P and no more than 5% of T events were detected. This observation
can be translated into thez notation as:mP 1 z0.05sP . u andmT 1
z0.95sT , u (wherez0.05 is negative). Combining the two statements
we have

mP 1 z0.05sP . mT 1 z0.95sT (B1)

wherez0.05 ' 21.6 andz0.95 ' 1.6.
Similar relationships can be found by comparing other classes of

events: the fact that approximately 50% of S and 2% of T are greater
thanu 5 3,500 for the data of Fig. 3 indicates thatmS 1 z0.50sS . mT

1 z0.98sT or, substituting in the tabulated values forz0.50 and z0.98,
mS . mT 1 2sT.

Appendix B2: implications of np values on the
percentage of detection

m ands2 can be related to the release parametersn andp. For each
type of events and assuming binomial statistics, we havem 5 np and
s 5 =np(1 2 p).

Relationships of the form ofEq. B1 can be used to determine
theoretical limits on the number of quanta potentially involved in each
type of events. For any nonzero value ofsP and sT, this equation
directly implies thatmP . mT and therefore thatnPpP . nTpT. In
other words, there can be no signal-flag pattern if thenp products are
equal. This rule can be generalized to a compound binomial. If then
quanta are released with different probabilities, thenmP 5 ¥k51

nP pk,P,

mT 5 ¥k51
nT pk,T, sP 5 =¥k51

nP pk,P(1 2 pk,P), and sT 5
=¥k51

nT pk,T(1 2 pk,T). Then it is easily shown that for fixedn andm
the compound binomial has always a smallers than the simple
binomial distribution.

For both binomial-type models, the smaller are the valuessP and
sT, the closer can bemP andmT. In the theoretical limits wheresP 5
0 andsT 5 0, it is required fromEq. B1that nP . nT.

Using the coefficient of variation CV5 s/m, we have fromEq.B1
the relation

mP . mT

1 1 z0.95CVT

1 1 z0.05CVP

(B2)

where CVP and CVT are the coefficients of variation of the P and T
events respectively. For example, taking CVP 5 0.28 which is the
mode of pooled experimental data from M cell’s inhibitory connec-
tions (Korn et al. 1986), and assuming a similar CV for the S and T
events, indicates thatnPpP . 2.62nTpT. The observed relationships
between P and S and S and T events indicate thatnPpP . 1.81nSpS

andnSpS . 1.55nTpT.
The CV also constrains the relationship betweenn andp

p $
1

1 1 CV2n
(B3)
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where the equality holds for a simple binomial model and the inequal-
ity for a compound binomial model (wherep is the mean ofpk). Even
under these constraints,Eqs. B2 and B3 allow a wide range of
physiologically reasonablen andp combinations consistent with the
empirically observed PMs.

Appendix B3: extension to synchronized neurons

ConsideringN cells firing synchronously, wherecell i 5 1, . . . ,N
has ni potential quanta for release, the total numbern of possible
quanta is

n 5 O
i51

N

ni (B4)

Denoting the probability of release of quantumk in cell i aspk,i, then
the mean number of quanta released is

m 5 O
i51

N O
k51

ni

pk,i (B5)

which is exactly the same as if alln quanta were from a single cell.
The variance in the number of quanta released in theN cells is

s2 5 O
i51

N O
k51

ni

pk,i~1 2 pk,i! (B6)

which again is identical to the situation where alln quanta were from
a single cell.
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