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Pilgram, Berndt, and Daniel T. Kaplan. Nonstationar-
ity and 1/f noise characteristics in heart rate. Am. J. Physiol.
276 (Regulatory Integrative Comp. Physiol. 45): R1–R9,
1999.—The power spectrum of human heart rate (HR) mea-
sured over 24 h exhibits ‘‘power-law’’ 1/f a-type spectral behav-
ior with a < 1. We investigate possible nonstationarity in
time of the exponent a using maximum likelihood estimation,
which allows relatively short data segments to be used.
Examination of 24-h HR records from ambulatory normal and
congestive heart failure (CHF) subjects indicates that the
power-law structure of HR is nonstationary. In addition, a
varies with time scale and is different for normal (a < 1) and
CHF (a < 1.5) subjects. Simulations suggest that a possible
mechanism underlying the observed power-law spectrum
may be a switching between values of a near zero (white
noise) and near two (Brownian motion). This mechanism
generates power-law forms quantitatively similar to CHF
subjects when the switching occurs very rapidly and similar
to normal subjects when the switching is less rapid.

power law; control; self-similarity; model; surrogate data

IT HAS BEEN NOTED by numerous investigators (10, 12,
16, 20) that the variance of human heart rate (HR) or
R-R intervals tends to increase when examined on
longer and longer time scales. When examined using
spectral analysis, this increase has the form of a ‘‘power
law’’ where the squared amplitude of the Fourier
transform at frequency f is proportional to 1/fa. Generi-
cally, this form is called ‘‘one-over-f noise’’ and indeed it
is found empirically that in heart rate a < 1, as first
reported by Kobayashi and Musha (10).

Figure 1A shows a 2-h segment of a 24-h R-R interval
time series. Figure 1B depicts the power spectrum P( f )
for the entire 24-h record. One can divide the power
spectrum into two main parts. At frequencies above
,0.02 Hz (or, equivalently, time scales ,50 s) the HR
does not have 1/f structure and in fact shows the two
well-known broad peaks: one at the frequency of respi-
ration and one at a time scale of 10 s. At frequencies
below ,0.02 Hz the power spectrum is well approxi-
mated by a straight line of slope a < 21. Because the
power spectrum is being plotted on log-log axes, this
straight line corresponds to a power-law relationship
P( f ) , 1/f a.

Although 1/f a noise is observed in a wide diversity of
physical, technological, and biological systems, e.g.,
river flows (4), traffic densities (9), and loudness fluctua-
tions in speech and music (22), there is currently no

general explanation for its ubiquity and no generally
satisfactory framework for its modeling in specific
instances. In cardiac physiology, where there are numer-
ous interacting control systems and adapting mecha-
nisms with a wide range of time scales (3), it is of
interest to know why a single exponent a should
describe the relationship between fluctuations on time
scales from 1 min to several hours.

We are interested here in two questions: Is the
exponent a constant, independent of frequency (for
f , 0.2 Hz)? Is the exponent a constant over time?

METHODS

The fundamental method we employ for assessing possible
changes in a with time involves dividing a 24-h R-R interval
time series into short segments, computing an estimate â in
each segment and checking whether â is statistically signifi-
cantly different from one segment to another. However, we
confront the trade-off between bias and variance: to track
rapid changes in a we need to use short segments, but to get
reliable estimates â we want segments to be long. Although
this trade-off is unavoidable, we optimize our estimates â by
using an efficient maximum likelihood estimator (MLE) of a.
This MLE has been found to provide estimates that are
superior to linear regression on the logarithmic power spec-
trum or to Hurst-exponent type estimators (13, 1).

Time-Rescaling Analysis

When one divides a long time series into segments, one is
implicitly setting the lowest frequency that can be considered
in each segment. If we wish to include frequency f in the
analysis, our segments must have length at least 1/f s. For
instance, for frequency scales down to 0.0002 Hz, data
segments must be .5,000 s.

The interval Ts between samples sets the highest fre-
quency that can be considered (1/2Ts). In studying the 1/fa

structure of R-R intervals, we would like to be able explicitly
to set both the upper and lower frequency bounds. When
using a fast Fourier transform (FFT) estimator this is straight-
forward: explicitly set the frequency window over which
linear regression is performed and ignore other frequencies.
The MLE technique does not directly permit this, but we can
still impose frequency bounds via the segment length and by
setting the sampling interval Ts. The method that we have
developed, which we term time rescaling analysis (TRA),
consists of the following steps: 1) interpolate the raw R-R
interval sequence into evenly spaced samples with Ts 5 0.5 s;
2) pick a lower and upper frequency of interest (flower and
fupper); 3) anti-alias filter and resample the time series with a
sampling interval of Ts 5 1⁄2 1/fupper; 4) divide the resampled
time series into segments of length (L) 5 1/flower (in the work
reported here, we make our segments L 5 256 points, giving
flower 5 fupper/128 5 fupper/27; thus we cover 7 octaves of the
frequency scale). 5) For each segment, use MLE to compute
the estimate â.
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At this point, we have a time series of â: one estimate for
each segment. This time series can be examined directly to
detect changes in a over time, as in Figs. 2A and 3A.

To investigate how a depends on the frequency flower, we
repeat steps 1–5 for several different values of flower, as seen in
Figs. 2B and 3B, where the results are formatted in terms of
Ts 5 1/2Ts.

Assessing Statistical Significance

Figure 2 shows the results of applying the TRA technique
to a synthetic signal whose power spectrum (estimated from
the FFT) is a perfect power law with a 5 1. It can be seen (Fig.
2A) that the estimates â vary somewhat from segment to
segment. Because the synthetic signal is constructed to be
stationary, we know that this is sampling variability and
results from the fact that each segment is a sample from the
perfect power-law signal.

In considering whether nonstationarity in a is responsible
for segment-to-segment variation in â, we need to take into
account sampling variability. One way to do this is to use
synthetic data of the sort generated in Fig. 2 that has a
perfect power-law structure. This approach was used in
previous work studying the sampling distribution of the MLE
estimator (13). However, it has not yet been established that
R-R interval data is indeed perfect power-law data. We have
therefore used a more general technique for generating
synthetic data: the method of surrogate data (7, 8, 19).

Surrogate data are obtained in the following way: 1) take
the Fourier transform of the original time series; 2) random-

ize the phases at each frequency to be uniformly distributed
in [0, 2p]; 3) take the inverse Fourier transform.

Because the amplitude of the Fourier transform remains
unchanged in step 2, the power spectra of the surrogate data
and the original data are identical. Different realizations of
surrogate data, all with the same power spectrum, can be
generated by using different random phases in step 2.

Surrogate data exhibit the following important characteris-
tics. 1) By construction, surrogate data are equivalent to
linear filtering of stationary Gaussian white noise. 2) The
process that generates surrogate data is stationary, i.e., the
coefficients of the filter process remain constant as do the
properties of the Gaussian white noise.

Thus surrogate data stem from a linear and stationary
process. We note that although surrogate data have the same
linear correlations as the original data, any nonlinear correla-
tions in the original data do not appear in the surrogate data.
Insofar as nonlinear correlations exist in R-R interval data [a
controversial issue that is the subject of current research (6,
7, 14, 17)], the surrogate data will be qualitatively different
from the R-R interval data. However, although nonlinearities
might possibly be important in the generation of 1/fa noise,
estimates of a based on spectral analysis or the MLE method
used here will be insensitive to the nonlinear correlations in
the data. Therefore we claim that surrogate data provide an
appropriate statistical technique for estimating the sampling
distribution of the MLE estimator. However, without a spe-
cific model of how some nonlinearity underlies 1/fa noise, we

Fig. 1. A: 2-h segment of a 24-h R-R
interval time series. B: power spectrum
of the entire 24-h record, estimated us-
ing a fast Fourier transform (FFT.)
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do not know how to construct an empirical test of the validity
of this claim.

Using surrogate data, we can estimate the sampling distri-
bution for â for a stationary process with the same power
spectrum as the 24-h R-R interval data. We use three
approaches to investigating whether the distribution from
surrogate data differs from that of the original R-R interval
data; we term this the stationarity-in-time analysis.

The first approach is to graphically display the histograms
of the segment-by-segment estimates â for the R-R interval
data and a surrogate data set. If the R-R interval data have a
nonstationary a, the histogram should be broader for the R-R
interval data than for the surrogate data. In addition, we plot
out a time series of â versus time for both the R-R-interval
data and one realization of surrogate data.

The second approach is to quantify the width of the
distribution of â using the interquartile range and compare
the width of the estimates â for the R-R interval to the
estimates for 10 different realizations of surrogate data using
a two-sided t-test.

A third approach is to characterize general differences in
the distribution using the Kolmogorov-Smirnov (K-S) test
(15, 21). The K-S measure d is defined as the maximum value
of the absolute difference between two cumulative distribu-
tion functions. For each R-R interval time series we obtain a
set of estimates â. Ten realizations of surrogate data are used,
producing 10 sets of â from stationary processes. First, we

compare the data estimates to each of the 10 surrogate
estimates using the K-S statistic and obtain 10 measures D 5
(d1, d2, . . . , d10). Then, we compare each of the surrogate
estimates to each other and obtain 10 p 9/2 5 45 measures
Ds 5 (ds1, ds2, . . . , ds45). Finally, we perform Student’s t-test
to determine whether the two samples D and Ds could have
the same mean.

We note that surrogate data were developed originally (19)
to detect nonlinearity in possibly chaotic data. This use
involves employing a statistic that is sensitive to nonlinear
structure. Here, we use a statistic â that is based on the
autocorrelation function and hence models the signal as
linear. Because of this, differences between the surrogates
and the test data do not point directly to nonlinearity of the
test data. Instead, they reflect other violations of the null
hypothesis associated with surrogate data, in particular the
stationarity of surrogate data.

Illustration of the Techniques Using Synthetic Data

To illustrate the stationarity-in-time and TRA analyses, we
consider three synthetic time series: 1) a ‘‘perfect’’ stationary
1/f time series where a is constant in time and the same at all
frequencies; 2) a time series where a changes in time but is
the same at all frequencies at each time; 3) a time series
where a is different for different frequency bands, but is
constant in time.

Fig. 2. Analysis of the simulated perfect 1/f process. A: estimated
exponent â vs. time for Ts 5 10 s for simulated data (solid line)
showing mean 6 2 SD (dotted lines) of all surrogate sets and 1 set of
surrogates (x marks). B: Time rescaling analysis (TRA) showing
exponents â vs. sampling time Ts with mean 6 2 SD at each Ts. C:
histogram for â shown in A. D: histogram for â from surrogates
shown in A.

Fig. 3. Analysis of the simulated time-varying 1/f a process. A:
estimated exponent â vs. time for Ts 5 10 s for simulated data (solid
line) showing mean 6 2 SD (dotted lines) of all surrogate sets and 1
set of surrogates (x marks). Dashed line indicates exponent a used for
generation of simulated data as a function of time. B: TRA showing
exponents â versus sampling time Ts with mean 6 2 SD at each Ts. C:
histogram for â shown in A. D: histogram for â from surrogates
shown in A.
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a Stationary in time, independent of frequency. A perfect 1/f
time series of length 65,536 sample points was generated
using a spectral synthesis method, and then a subsample of
length 8,192 was used as our test data as in Ref. 13. A length
of 8,192 is roughly the same as the 24-h R-R interval time
series when sampled every 10 s.

For the stationarity-in-time analysis, the time series was
sampled every 10 s (that is, the 8,192 point time series was
used directly) and overlapping segments of length L 5 256
points were used. For the TRA analysis, the time series was
sampled at Ts 5 10 s, 20 s, . . . 150 s and divided into segments
of length 256 points.

Figure 2 and Table 1 show the results. Sampling fluctua-
tions are visible in Fig. 2A, but these are not qualitatively
different than the surrogate data (shown as x in Fig. 2A). The
histograms showing the spread of â are essentially identical;
the interquartile range (IQR) of the distribution of â from the
1/f time series (IQRd) and the IQR of the distribution of â from
surrogates (IQRs) are roughly the same. The K-S computa-
tions similarly show that the distribution of â for the 1/f time
series is not significantly different than that of the surro-
gates, which is underlined by a significance level P , 0.40.
Thus there is no indication of nonstationarity in time here, as
would be expected for this type of synthetic signal.

In Fig. 2B, the estimate â is plotted for each sampling time
Ts for each segment. For fast sampling times (e.g., 10 s) there
are many segments in the whole time series and consequently
many estimates â (plotted as x). For slow sampling times
(e.g., 100 s), there are fewer segments and thus fewer
estimates for â. Note that at a sampling time of 100 s, the
time scales comprehended by one estimation range up to
7.1 h. There is no evidence for a time-scale dependence of a, as
expected for this type of signal.

a Changes in time, independent of frequency. The ability of
MLE to track nonstationarity was tested by estimating the
exponent a of test data simulating time-varying behavior of
exponent a. The data set was generated by concatenating
time series, 256 data points long, with time-varying a in the
range 0.5–1.8. As seen in Fig. 3A, the estimates â (solid line)
track closely the a used in the simulation (dashed line). The
surrogates show no such pattern. The histogram of â is much
broader for the nonstationary data than for the surrogate
data (which has more or less the same width as in the
stationary case illustrated in Fig. 2).

Figure 3B depicts all the estimates â versus sampling time
Ts. Here â is approximately constant over a wide range of
time scales, although there is no single a in this data set. This
suggests that a nonperfect power-law process may appear to
have a â that is independent of frequency. But note that the
range of â in Fig. 3B is much wider than in Fig. 2B, reflecting
the nonstationarity of the signal in Fig. 3. This is also
underlined by the results from the statistical analysis given
in Table 1, P , 0.0001.

a Stationary in time, but changes with frequency. The
ability of TRA to discern variations in a at different frequen-
cies is illustrated by application to a time series with fre-
quency-varying exponent a. A time series of length 216 5
65,536 was synthesized. The power spectrum (Fig. 4A) shows
that a 5 2 for f , 0.0017 and a 5 0.8 for f $ 0.0017. For the
analysis, a segment of length 8,192 was extracted. The power
spectrum of this segment (Fig. 4B) closely mimicks power
spectra seen in studies of HR.

The stationarity-in-time analysis (Fig. 5A, C, and D; Table
1) gives no indication of nonstationarity, as is to be expected
for this stationary time series. The TRA analysis (Fig. 5B)
shows a clear drift in â with time scale.

The power spectrum in Fig. 4A gives a clearer indication of
MLE of the structure of a as a function of frequency f than
does TRA (Fig. 5B). However, this is misleading. Only those
data in Fig. 4B were used in the TRA analysis, and realistic
data of any length will always have the sampling fluctuations
seen in Fig. 4B. The precise straight-line form in Fig. 4A does
not incorporate the sampling variability that must be present
in any experimentally collected data set. We encourage the
reader to perform the following experiment. Without refer-
ence to Fig. 4A, locate the frequency at which the bend in Fig.
4B occurs. Compare your estimate to the frequency clearly
indicated in 4A. We find that an error by a factor of two is
typical.

Quantitative estimate of a from the power spectrum re-
quires that linear regression be performed. Figure 6 shows
the result of such a regression on the power spectrum in Fig.

Table 1. Synthetic time series

Case No. IQRd IQRs STDIQR t Significance, %

1 0.17 0.14 0.02 20.85 39.72
2 0.90 0.22 0.03 48.53 0.00
3 0.14 0.15 0.02 1.14 26.05

Interquartile ranges (IQR) and results of the t-test using Kol-
mogorov-Smirnov (K-S) statistic describing differences between dis-
tributions of data estimates â and the surrogate estimates: IQRd of
the data estimates, mean IQRs, and standard deviation STDIQR of the
corresponding surrogate sets, Student’s value t from K-S measures D
and Ds of estimates and probability significance in % of an observed
value of t for D and Ds from synthetic time series.

Fig. 4. A: Power spectrum of a perfect frequency-varying 1/f a process
with a 5 0.8 for time scales smaller than 10 min, i.e. frequencies
higher than f 5 1.7·1023, a 5 2 for larger time scales, and of length
n 5 216 (64 K). B: power spectrum of a segment of length n 5 213 (8 K)
of the signal in A.
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4B. Linear regression was performed over a window from
flower to fupper, and â was estimated as the slope of the line as a
function of fupper. To facilitate comparison with TRA, we have
formatted the results as a function of Ts 5 1/fupper. Figure 6
shows regressions done with frequency windows of seven
(same as used in TRA), six, and five octaves. The shorter
windows do not make clearer the sharp transition from a 5 2
to a 5 0.8.

ANALYSIS OF HEART RATE

We applied the stationarity-in-time and TRA analy-
sis to 20 recordings of R-R intervals over 24 h from
which abnormal beats had been deleted. These time
series were provided to us by C. K. Peng and A. L.
Goldberger (see Ref. 12). There were 9 healthy subjects
and 11 congestive heart failure (CHF) patients.

Figures 7 and 8 show the stationarity-in-time and
TRA analysis for a representative normal subject and a
representative CHF patient. In both cases, nonstation-
arity in a is suggested by the broad histograms of â for
the R-R interval data compared with the surrogate
data. The CHF patient shows clear sustained devia-
tions in â from the mean value that last for several
hours.

The TRA analysis shows that for the CHF subject â
increases from <1 at Ts near 20 s to <1.5 at Ts near 100
s. This pattern is sustained in almost all of the records.
Figure 9 shows the TRA analysis for all 20 records. The
CHF patients typically show a higher â than the
normal patients at large time scales (corresponding to
low frequencies).

The stationarity-in-time analysis is presented for all
of the subjects in Fig. 10 and Table 2. In almost all
subjects, the IQR of the distribution of â is roughly

Fig. 5. Analysis of the simulated frequency-varying 1/f a process
shown in Fig. 4. A: estimated exponent â vs. time for Ts 5 10 s for
simulated data (solid line) showing mean 6 2 SD (dotted lines) of all
surrogate sets and 1 set of surrogates (x marks). B: TRA showing
exponents â vs. sampling time Ts with mean 6 2 SD at each Ts. C:
histogram for â shown in A. D: histogram for â from surrogates
shown in A.

Fig. 6. Exponents â from linear regression on a moving window of
the power spectrum in Fig. 4B vs. frequency fupper of the window
(formatted in terms of sampling time Ts). Three different lengths of
the regression window are shown, covering a frequency range of 7
(solid line), 6 (dashed line), and 5 octaves (dash-dotted line) data
points.

Fig. 7. Results of the analysis of case no. 16,786, a normal subject. A:
estimated exponent â vs. time for Ts 5 10 s for R-R interval data
(solid line) showing mean 6 2 SD (dotted lines) of all surrogate sets
and 1 set of surrogates (x marks). B: TRA showing exponents â vs.
sampling time Ts with mean 6 2 SD at each Ts. C: histogram for â
shown in A. D: histogram for â from surrogates shown in A.

R5NONSTATIONARITY AND 1/F NOISE IN HEART RATE



twice as large in the R-R interval data compared with
the width expected purely due to sampling variability
(as indicated by surrogate data). The K-S computations
similarly show that the distribution of â for the R-R-
interval data is different than that of the surrogates
and point to this difference being statistically signifi-
cant at a level P , 0.01 in all except CHF subject 9,778.

DISCUSSION

R-R interval time series show in almost all cases
‘‘mixed’’ process behavior, i.e., exponent a exhibits time
and frequency dependence. Similar results were also
found by Meesmann et al. (11), who showed that in the
HR of young healthy subjects, periods of 1/f noise had
intermittent subperiods of white noise during the night.
Ichimaru and Katayama (5) suggest that the exponent
a may be different for each sleep stage. Di Rienzo et al.
(2) found that â measured via power-spectral regres-
sion varied with frequency f.

One possibility suggested by Fig. 3 is that nonstation-
arity and the observed 1/fa pattern in HR are related. In
that figure, â < 1 at large Ts, although a is not constant.
For instance, at Ts 5 140 s, estimates are being made
using segments that span 10 h, during which time a is

Fig. 8. Results of the analysis of case no. 9,706, a congestive heart
failure (CHF) subject. A: estimated exponent â vs. time for Ts 5 10 s
for R-R interval data (solid line) showing mean 6 2 SD (dotted lines)
of all surrogate sets and 1 set of surrogates (x marks). B: TRA
showing exponents â vs. sampling time Ts with mean 6 2 SD at each
Ts. C: histogram for â shown in A. D: histogram for â from surrogates
shown in A.

Fig. 9. Estimated exponents â vs. sampling time Ts for 24-h R-R
interval data from 11 CHF patients (dotted lines) and 9 normal
subjects (solid lines). Mean â for each subject at each Ts is plotted.

Fig. 10. Interquartile range (IQR) of â vs. patient index no. for
sampling time Ts 5 10 s. A: IQR of â from normals (solid line) and
mean IQR 6 2 SD of all corresponding surrogate sets (dashed and
dotted lines). B: IQR of â from CHF patients (solid line) and mean
IQR 6 2 SD of all corresponding surrogate sets (dashed and dotted
lines).

Table 2. Results of t-test using K-S statistic describing
differences between distributions of data estimates a
and surrogate estimates for sampling time Ts 5 10 s

Index Case No. t Significance, %

Normal subjects

1 16,265 9.69 0.00
2 16,273 7.01 0.00
3 16,420 11.53 0.00
4 16,483 3.38 0.14
5 16,539 14.53 0.00
6 16,773 11.88 0.00
7 16,786 21.14 0.00
8 17,052 2.90 0.54
9 17,453 12.51 0.00

Congestive heart failure subjects

1 8,519 10.53 0.00
2 8,679 6.85 0.00
3 9,049 6.43 0.00
4 9,377 15.06 0.00
5 9,435 9.90 0.00
6 9,643 7.53 0.00
7 9,674 23.47 0.00
8 9,706 6.73 0.00
9 9,723 15.12 0.00

10 9,778 1.90 6.22
11 9,837 7.05 0.00

Student’s value t from K-S measures D and Ds of estimates and
probability significance in % of an observed value of t for D and Ds
from data of normal and congestive heart failure subjects.
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varying substantially, yet â at these long segment
lengths does not vary much from segment to segment.

Although there is no general theoretical explanation
for systems with a 5 1, there are simple theoretical
models for a 5 0 (white noise) and a 5 2 (Brownian
motion, the cumulative sum of white noise). Is it
possible that a system that switches between white
noise and Brownian motion might produce â 5 1?

From our stationarity-in-time analysis of R-R inter-
val data, there is no reason to suspect that the periods
of white noise or Brownian motion might last for as
long as one analysis segment (2,560 s). If this were the
case, we would expect to see values of â near 0 or 2, but
we do not. Instead, we hypothesize that the switching
might occur much faster, over say one-quarter or
one-half of the analysis segment (320 s or 640 s).

In terms of control systems, Brownian motion corre-
sponds to control being turned off, whereas white noise
variability indicates that control is on: the system may
be knocked off its set point by an outside disturbance,
but quickly returns to it, only to be knocked off again.
But why should HR control be turned off?

HR is one of several effector variables involved in
regulating the cardiovascular system. By ‘‘effector vari-

able’’ we mean a feature of the system that is used to
bring a regulated quantity to the appropriate level or
range of levels. Other effector variables are peripheral
resistence, blood volume, and vascular compliance.
Examples of regulated quantities are blood pressure
and blood gas levels that are directly sensed or cardiac
output measured indirectly via blood gas levels and
blood pressure. Note that HR is generally considered
not to be a regulated quantity; it is a means to an end
rather than an end in itself. Although there are barore-
ceptors and chemoreceptors to measure blood pressure
and blood gas levels, there is no analogous receptor for
HR. This suggests that HR might be allowed to drift
(Brownian motion). However, drifts in HR might be
punctuated by periods of resetting when control sys-
tems attempt to use HR as an effector variable and
therefore HR is locked in to the appropriate value for
the quantity that is being regulated.

In addition, control systems acting on very long time
scales (e.g., the renal blood-volume control system)
might indirectly affect HR via other feedback loops.
This could cause slow, long-term drifts in HR. All told,
HR might be seen as episodes of Brownian motion

Fig. 11. Histograms â from the model nonstationary process (see
DISCUSSION). A1: results from data generated by concatenation of
model segments 256 data points long. A2: results from its surrogates.
B1: results from data generated by concatenation of model segments
32 data points long. B2: results from its surrogates.

Fig. 12. TRA analysis on the model nonstationary
process. â vs. sampling time Ts for 4 nonstationary test
data sets generated by concatenating white and Brown-
ian motion segments with different segment lengths,
256 (solid line), 128 (dash-dotted line), 64 (dashed line),
and 32 (dotted line) data points. A: TRA results from
time series with local random trends added. B: TRA
results from time series without local random trends.

Fig. 13. A1: a 2-h segment of an R-R interval time series sampled at
Ts 5 10 s. A2: 2-h segment from the nonstationary model of a. B1:
power spectrum of a 24-h R-R interval time series showing 1/f-like
spectral behavior. B2: power spectrum of 24-h simulated time series
showing 1/f-like spectral behavior.
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interrupted by episodes of white noise for short time
scales, all on a background of slow trends.

To model this hypothesized structure for HR, we
concatenated short segments of Gaussian white noise
and Brownian motion. For each segment, we made a
random choice between white noise and Brownian
motion. As a background, we added to each segment a
linear trend with a random direction for each segment.
These trends were matched at their endpoints. Note
that none of these three processes individually produce
1/f noise: white noise has a 5 0, Brownian motion has
a 5 2, and the piecewise linear trends have a 5 2 for
low frequencies and a 5 0 for high frequencies.

Figure 11 shows the histograms of the estimated
exponents â (sampling time Ts 5 10 s) for data pro-
duced by our model process where model segments 256
(Fig. 11A) and 32 data points long were concatenated
(Fig. 11B). For a model segment length of 256 data
points, the estimates â are able to resolve the time
series into 1/f0 and 1/f2 segments, expressed by two
main peaks at a 5 0 and a 5 2 in the histogram. For
model segments of length 32, â is not able to resolve the
time-varying character of exponent a. The histograms
of â from surrogate data are substantially narrower
than for the model data, providing the same kind of
evidence for nonstationarity seen in the R-R interval
data.

Figure 12A, which depicts the TRA analysis of â vs.
Ts shows a pattern similar to that seen in the R-R
interval data. We point out the similarity of the short
model segment (32 points) TRA to that found in normal
subjects, and the long model segment (256 points) TRA
to that found in CHF patients.

Figure 12B shows the effect of deleting the local
linear trends part of the model. For the short model
segment (‘‘healthy’’) data, there is a loss of verisimili-
tude.

Visual comparision (Fig. 13) of a randomly selected
segment of R-R interval data from a normal subject and
a synthetic signal from the nonstationary segments-
with-trend model of a suggests that this simple model
produces realistic time series with realistic power
spectra.

This simple model of the 1/fa structure of HR sug-
gests that the power-law structure of HR may be
nonstationary over fairly short intervals, similar to the
5-min segments commonly used in short-term HR
variability analysis (18). It also points to a possible
difference between cardiovascular control in normal
and CHF subjects.

In addition, the stationarity-in-time analysis raises
the question of whether it is possible to obtain more
information about the 1/fa behavior of HR data by
analyzing longer time series. The answer might be no.
The range of exponents encountered indicates that the
observed 1/fa pattern might be a property of the interac-
tion of the estimators with nonstationarity in the
exponent a, as we have seen in the simulations.

Perspectives

Our statistical analysis of 24-h HR records indicates
that the 1/fa structure in HR fluctuates in time and that
a varies with time scale. Analysis of 24-h records as a
whole shows a is ,1, but analysis of short segments
(,1 h) shows that a fluctuates significantly. When
looked at another way, concatenating many 1-h seg-
ments with widely varying a produces a 24-h signal
with a <1.

We speculatively carry this process to an extreme:
using computer simulations we show that by concatenat-
ing very short segments with a 5 0 or a 5 2 one
produces 1-h segments where a is close to 1 but varies
significantly on either side of it and 24-h patterns with
a quite close to 1. We cannot confirm this rapid-
switching model by direct measurement of a on very
short segments: the statistical methods have too high a
variance on the short segments and we would need to
use even shorter segments to find out when the hypo-
thetical switching occurs.

It may be possible to assess the rapid-switching
model by measurements other than a. For instance, the
amplitudes of the well-known 10-s and respiratory HR
spectral peaks may vary as cardiac control switches
from an a 5 0 to an a 5 2 pattern. At this point in the
research, we see the value of the model as a way of
supporting and organizing the hypothesis that the 24-h
1/f structure may be an epiphenomenon and is the
statistical result of a conceptually much different pro-
cess.
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