
Nonlinear noise reduction forelectrocardiogramsThomas SchreiberPhysics Department, University of Wuppertal,D{42097 Wuppertal, GermanyDaniel T. KaplanCentre for Nonlinear Dynamics in Physiology and Medicine,McGill University, 3655 Drummond Street,Montr�eal, Qu�ebec H3G 1Y6, CanadaJuly 18, 1996AbstractThe electrical activity of the heart usually shows dynamical be-havior which is neither periodic nor deterministically chaotic: Theinterbeat intervals seem to contain a random component. Althoughlong term predictions are thus impossible, good predictions can bemade for times smaller than one heart cycle. This fact is used in or-der to suppress measurement errors by a local geometric projectionmethod which was originally developed for chaotic signals. The re-sult constitutes evidence that techniques of time series analysis basedon chaos theory can be useful despite the fact that very few natu-ral phenomena have been actually established to be deterministicallychaotic.1 IntroductionMany natural phenomena show irregular, non periodic, behavior in time. Theclassical explanation is that random inputs are driving the system. In the last1



decade or so, chaos theory has provided an alternative approach: nonlineardeterministic dynamical systems can evolve irregularly without the need ofrandom inputs. This new concept is particularly attractive in biology andphysiology where the systems are expected to be nonlinear and where often asimple, linear stochastic description fails to account for the rich structure ofthe signals. Consequently, considerable e�ort has been made to apply ideasfrom the theory of deterministic chaos to biological and physiological data.[1]Although the introduction of the paradigm of deterministic chaos haslead to new insights in several respects, it must be said that the number ofsuccessful practical applications of chaotic methods to biological data hasremained rather small. The reason is twofold. First, many of the meth-ods of nonlinear time series analysis have been developed using long, cleancomputer generated sequences and they remain useful only for exceptionallyclean experimental signals. A typical biological data set will be too short,too noisy and not stationary enough to yield meaningful results. Second,most of the theory deals with the case that the system is purely determinis-tic and generally low dimensional, which is not expected to be true for livingsystems. It is an open question, which of the theoretical results remain atleast approximately valid when strict determinism is lacking and which ofthe data analysis techniques are at all applicable to high-dimensional data.In this paper we will study human electrocardiograms (ECGs) as an exem-plary physiological system where relatively clean, long and stationary mea-surements are possible. See Fig. 1 for a sample time series. The underlyingphysiological process, the electrochemical excitation of cardiac tissue, is non-linear and the signals show both uctuations and remarkable structures whichare not explained by linear correlations; a random signal with the same lin-ear correlations is unrecognizable as a clinical ECG. These structures makethe ECG useful to cardiologists as a diagnostic tool [2]. Despite these char-acteristics, ECGs are probably not deterministic chaos: [3, 4] The length ofthe cardiac cycles, measured by the R{R intervals between two successiveventricular beats, uctuates with an unpredictable component (see Fig. 2).These uctuations make long term predictions impossible, although the dy-namical evolution during one cycle is more or less con�ned to a typical shapewith some variation related to the respiratory cycle. This shape also varieswhen the heart rate changes.We will exploit the short term predictability in order to suppress mea-surement errors in an ECG using a nonlinear projection method developed2
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time (sec.)Figure 1: Two segments of a human ECG recording [5] Each panel shows tenseconds out of a total recording of 80 seconds which was used in this paper.The two segments di�er mainly in the duration of the cycles. Other features,like the u{shaped P{wave prior to the big ventricular complex, remainedqualitatively constant during the recording period.
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for chaotic signals. While the predominant QRS complexes which reectthe electrical depolarization of the ventricle are usually visible even in thepresence of rather strong noise, more subtle features like the atrial P{wave(which normally occurs 120{200 ms before the peak of the QRS complex)may be concealed by errors which are due the imperfect transmission of thesignal from the heart through di�erent kinds of tissue, the electrode and theelectronic equipment. These errors are particularly serious for ECGs takenduring exercise (sweaty skin, muscle activity) and on long-term ambulatory(Holter) recordings where the experimental conditions can not be controlledthat well. The peculiar twofold nature of ECGs (a pronounced pattern re-peated with irregular intervals) makes it di�cult to �lter these signals withFourier methods. The continuous part of the spectrum is due to both themeasurement noise (we want to cancel) and to the irregular interbeat inter-vals (we want to preserve).2 Nonlinear ProcessingIn many nonlinear methods, the �rst step in the analysis of deterministictime series is to reconstruct the phase space of the dynamical system, e.g.using delay coordinates xn = (xn�m+1; : : : ; xn).Due to the random uctuations of the cycle lengths, we cannot expectthe embedding theorems [8] to be completely valid here, especially near thebeginning of each beat. Nevertheless, the time-delay representation is veryuseful to exploit the structure hidden in the scalar recordings, and the as-sumptions of the embedding theorems may be well enough satis�ed to allowpractical use to be made of the embedding technique. In this paper we willuse approximate projections locally in the reconstructed phase space to re-duce measurement noise in the time series.Let us now outline the nonlinear projection technique used to reducenoise in the ECG signal. The technique has been discussed in detail forthe case of a deterministically chaotic signal plus measurement noise in [9],examples with experimental data are given in [10]. ECGs are usually denselysampled in which case any of the local schemes reviewed in [11] should workabout equally well. Consider for a moment a deterministic dynamical systemwritten in m dimensional delay coordinates: xn = f(xn�m; : : : ; xn�1). Weperform a measurement which is subject to random uctuations yn = xn+�n.6



Rewriting the dynamics in an implicit form ~f(xn�m; : : : ; xn) = 0 shows thatin an m + 1 dimensional delay coordinate space the noise free dynamics isconstrained to an m-dimensional hypersurface. For the measured values ynthis is not exactly true, but the extension perpendicular to this hypersurfaceof the cloud of data points is only of the size of the noise level. Therefore onecan hope to identify this direction and to correct the yn by simply projectingthem onto the subspace spanned by the clean data. In order to do this,one has to reconstruct this surface from the noisy data. Since ECGs cannotbe assumed to be deterministic we cannot expect that even the noise freesignal lies exactly on a low dimensional manifold. We will rather accept asan empirical fact that the observed data remain close to such a manifold.Technically, we proceed as follows. In an embedding space of dimensionm + 1 we compute the covariance matrix of all delay vectors in a smallneighborhood of a given point which we want to correct. The eigenvectorsof this matrix are the semi{axes of the best approximating ellipsoid of thiscloud of points. Now the important assumption is that the clean signal livesnear a smooth manifold with dimension d < m+ 1, and that the variance ofthe noise is smaller than the signal. Then for the noisy data the covariancematrix has large eigenvalues corresponding to the directions occupied by thesignal and small eigenvalues in all other directions. Therefore we move thevector under consideration towards the subspace of large eigenvectors to getrid of the noisy components. See [9] for details.If we want to compute the correction for the n-th embedding vector yn, we�rst form a small neighborhood U around this point. The indices of the set ofpoints that fall into this neighborhood is denoted Un, so that the neighboringpoints are yj; j 2 Un. jUnj is the number of points in the neighborhood. Inthe following, the neighborhood size was set to the smallest value that gavekmin neighbors, but no smaller than 50 units (cf. Fig. 1). From the pointsyk; k 2 Un we construct the mean�i = 1jUnj Xk2Un yk�m+i; i = 0; : : : ;m (1)and the (m+ 1)� (m+ 1) covariance matrixCij = 1jUnj Xk2Un yk�m+iyk�m+j � �i�j : (2)7



We then introduce a diagonal weight matrix R and de�ne a transformedversion of the covariance matrix �ij = RiiCijRjj . In order to penalize cor-rections based on the �rst and last coordinates in the delay window we putR00 = Rmm = r where r is large. The other values on the diagonal of R are1. The Q orthonormal eigenvectors of the matrix � with the smallest eigen-values are called eq, q = 1; : : : ; Q. The projector onto the subspace spannedby these vectors is then Qij = QXq=1 eq;ieq;j: (3)Finally the i-th component of the correction �n is given by�n;i = 1Rii mXj=0QijRjj(�j � yn�m+j ): (4)This gives us the correction b? which can be added to each embedded vectorto bring the point towards the manifold spanned by the m + 1 � Q largesteigenvectors. Note that the R penalty matrix e�ectively makes the 2 largesteigenvalues lie in the subspace spanned by the �rst and last coordinates ofthe embedding space, and prevents the correction vector from having anycomponents in these directions.This correction is done for each embedding vector, such that we end upwith a set of corrected vectors in embedding space. Since each element ofthe scalar time series occurs in m+1 di�erent embedding vectors, we �nallyhave as many di�erent suggested corrections, of which we simply take theaverage. Therefore in embedding space the corrected vectors do not preciselylie on the local subspaces but are only moved towards them. In contrast tostrictly deterministic data we do not iterate the procedure here: the signalis not expected to be strictly con�ned to the manifold, only to be close to it.3 ResultsTo demonstrate the e�ectiveness of the nonlinear noise reduction technique,we apply it to two signals (upper panels in Figs. 4 and 5) from a publicallyavailable database [5], which we arti�cially contaminate with noise. Let xnbe the original ECG signal (which itself contains some measurement noise),8



yn the arti�cially contaminated signal, and cn the result of cleaning yn. Wecan de�ne the noise reduction factor to ber = vuuth(yn � xn)2ih(cn � xn)2i ; (5)the factor by which the rms error is reduced. Since xn was not really noisefree we could succeed in cleaning yn beyond the accuracy of xn, whencer is a lower bound on the true noise reduction factor. Let us stress herethat the rms error is not fully appropriate to represent the quality of noisereduction on ECGs. Many features of clinical relevance, like the P{waves,contribute little to the variance of the signal, which is dominated by the QRScomplex. This means that a procedure which minimizes the rms error doesnot necessarily minimize the distortion of clinically important features. Thisissue is also discussed in the next section.We applied the procedure to two fairly clean ECG signals (upper panelsin Figs. 4 and 5) which we arti�cially contaminated with measurement noise(second panels in Figs. 4 and 5). The signals we used are contained in a publi-cally available database [5] of the Massachusetts Institute of Technology andBeth Israel Hospital (Boston). The �rst example is an ECG sampled at theclinically typical rate of 250 samples per second. The data was contaminatedwith colored noise which has the same power spectrum as that part of thesignal itself which is close to the baseline (all points not belonging to one ofthe QRS complexes). The noise amplitude is 50% (the signal{to{noise ratiois -10dB).In the second example (Fig. 5) we used Gaussian white noise of an rmsamplitude of 25% of that of the signal. With 250 samples per second, whitenoise would be easily cleaned by a low pass �lter. This becomes impossiblefor more coarsely sampled data, like they appear e.g. in Holter recordings.To demonstrate that our method is substantially di�erent from a low pass�lter, the data was resampled to 50 points per second.In both cases shown in Figs. 4 and 5 we embedded the time series using adelay window of 500ms (corresponding to m = 125 and m = 25 dimensionsrespectively) and projected onto a two-dimensional manifold locally. Theradius of the neighborhoods was chosen to be 50 units.Table 1 summarizes the resulting rms noise reduction factors for bothexamples. The �rst column shows the time span covered by the delay coor-9
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dinates used. A window of 200ms e.g. corresponds to an embedding dimen-sion of 50 in the �rst and 10 in the second example. These high dimensionalembeddings are necessary to cover a signi�cant fraction of a typical cyclelength. Trials using a delay time greater than one sample and smaller em-bedding dimensions were found to yield inferior results consistently. Thenoise reduction factor is smaller for the white noise example due to the lowernoise level and the smaller sampling rate. Otherwise, the table shows thatresults are quite stable against changes to the parameters. We repeated theanalysis with ECGs from di�erent subjects and noise levels and always foundvery similar results. Let us note however that in order to further suppressalready very small noise, like for example in the \clean" signals we used, it isnecessary to have enough data in neighbourhoods as small as the noise am-plitude. This requires many more ECG cycles and stationarity might becomea serious issue.For a comparison we also applied an optimal Wiener �lter [12] in thespectral domain. In order to distinguish the signal and the noise in thespectrum we made use of the spectrum of the noise which was known inthis particular case. Thus the performance of the �lter can be regarded asa very optimistic example: in real examples we have to guess the spectrumof the noise from the data. Even with this aditional knowledge, the Wiener�lter gave only weak noise reduction (r = 1:33) for the �rst example andalmost no noise reduction (r = 1:05) for the second. Fig. 6 shows powerspectral estimates for the �rst example. The original clean data, the signalafter Wiener �ltering, and the signal after our nonlinear noise reductionprocedure have very similar spectra. The spectra of the noise added (whichwas also used for designing the Wiener �lter. This produces a �lter that issomewhat more e�ective than the one that would be designed in practice,where the exact spectrum of the noise is unknown.) and the noise subtactedby the nonlinear noise reduction procedure are consistent as well. Althoughboth the linear and nonlinear cleaning procedures were able to recover thespectrum of the original signal, the nonlinear algorithm yields much betternoise reduction, see Fig. 4 and Table I. Although the power spectrum of theWiener �ltered signal and the original are quite similar, the signals themselvesare quite di�erent. Clearly the phases of the Fourier components are alteredby the addition of the noise in a manner that the Wiener �lter cannot correct.For the second example, the Wiener �ltered signal is almost indistinguishablefrom the noisy one and thus not shown.11



tm k d r1) r2)200ms 20 1 2.88 1.552 2.80 1.573 2.65 1.5950 1 2.60 1.622 2.50 1.703 2.35 1.78300ms 20 1 2.90 1.702 2.77 1.733 2.66 1.7950 1 3.02 1.752 2.93 1.793 2.81 1.83500ms 20 1 3.17 1.822 3.12 1.863 3.04 1.9250 1 3.20 1.872 3.16 1.913 3.12 1.99Wiener �lter 1.33 1.05
tm=embedding time windowk =minimal number of neighborsd =dimension of manifoldr =noise reduction factor1) �rst example2) second example

Table 1: Performance of nonlinear noise reduction with di�erent choices ofthe parameters of the algorithm.
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4 DiscussionThe aspects of the ECG that are utilized by clinicians are not in general wellrepresented in the spectral domain, and so cannot be expected to be wellpreserved by linear �ltering. This also means that the rms error is not a fullysatisfactory measure for the clinical usefulness of noise reduction on an ECG.The clinically relevant features of the ECG are described in many textbookson the art and science of ECG interpretation (e.g., see [2]). Here, we mentionjust a few: the interval between the onset of the P wave and the onset ofthe QRS complex; the existence of a negative going Q wave at the onset ofthe QRS complex and whether it is big or small compared to the R wave;the existence of notches in the QRS complex; the level of the ECG betweenthe S and T waves; the width of the QRS complex; the interval betweenthe onset of the QRS complex and the end of the T wave. Evaluating thee�ect of �ltering on the clinical readability of the ECG ultimately requiresassessing the accuracy of clinician's diagnoses, which can be quite a di�cultundertaking. An example of such an assessment in the context of ECGcompression algorithms is given in [13] where the authors remark that \largeamplitude errors during rapidly changing portions of the QRS complex aremore tolerable than much smaller errors in the baseline which may conceal ormimic P{waves." The performance of our method on such features is foundto be satisfactory by inspection of Figs. 4,6, and 7; for instance, the clinicalused interval between the P{wave and QRS complex is easily discerned inthe cleaned data.Since we know little about the dynamical nature of the ECG, we hesitateto use projections down to a one dimensional manifold in order not to de-stroy possible degrees of freedom which do not contribute signi�cantly to therms error but may be clinically relevant. An example would be the variationin ECG morphology during the respiration cycle or due to changes in theheart rate. As Figs. 4 and 5 show, the method is able to handle quite largeuctuations in the heart rate (see also Fig. 2). However, for nonstationaryECGs which change qualitatively in time we would suggest to modify thepresent algorithm by weighting neighbours according to their separation intime from the current point. The implementation of such a modi�ed algo-rithm is subject to ongoing research.In conclusion, we demonstrated that the scope of nonlinear techniquesof time series analysis developed for deterministically chaotic signals is not14
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