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Abstract

The electrical activity of the heart usually shows dynamical be-
havior which is neither periodic nor deterministically chaotic: The
interbeat intervals seem to contain a random component. Although
long term predictions are thus impossible, good predictions can be
made for times smaller than one heart cycle. This fact is used in or-
der to suppress measurement errors by a local geometric projection
method which was originally developed for chaotic signals. The re-
sult constitutes evidence that techniques of time series analysis based
on chaos theory can be useful despite the fact that very few natu-
ral phenomena have been actually established to be deterministically
chaotic.

1 Introduction

Many natural phenomena show irregular, non periodic, behavior in time. The
classical explanation is that random inputs are driving the system. In the last



decade or so, chaos theory has provided an alternative approach: nonlinear
deterministic dynamical systems can evolve irregularly without the need of
random inputs. This new concept is particularly attractive in biology and
physiology where the systems are expected to be nonlinear and where often a
simple, linear stochastic description fails to account for the rich structure of
the signals. Consequently, considerable effort has been made to apply ideas
from the theory of deterministic chaos to biological and physiological data.[1]

Although the introduction of the paradigm of deterministic chaos has
lead to new insights in several respects, it must be said that the number of
successful practical applications of chaotic methods to biological data has
remained rather small. The reason is twofold. First, many of the meth-
ods of nonlinear time series analysis have been developed using long, clean
computer generated sequences and they remain useful only for exceptionally
clean experimental signals. A typical biological data set will be too short,
too noisy and not stationary enough to yield meaningful results. Second,
most of the theory deals with the case that the system is purely determinis-
tic and generally low dimensional, which is not expected to be true for living
systems. It is an open question, which of the theoretical results remain at
least approximately valid when strict determinism is lacking and which of
the data analysis techniques are at all applicable to high-dimensional data.

In this paper we will study human electrocardiograms (ECGs) as an exem-
plary physiological system where relatively clean, long and stationary mea-
surements are possible. See Fig. 1 for a sample time series. The underlying
physiological process, the electrochemical excitation of cardiac tissue, is non-
linear and the signals show both fluctuations and remarkable structures which
are not explained by linear correlations; a random signal with the same lin-
ear correlations is unrecognizable as a clinical ECG. These structures make
the ECG useful to cardiologists as a diagnostic tool [2]. Despite these char-
acteristics, ECGs are probably not deterministic chaos: [3, 4] The length of
the cardiac cycles, measured by the R-R intervals between two successive
ventricular beats, fluctuates with an unpredictable component (see Fig. 2).
These fluctuations make long term predictions impossible, although the dy-
namical evolution during one cycle is more or less confined to a typical shape
with some variation related to the respiratory cycle. This shape also varies
when the heart rate changes.

We will exploit the short term predictability in order to suppress mea-
surement errors in an ECG using a nonlinear projection method developed
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Figure 1: Two segments of a human ECG recording [5] Each panel shows ten
seconds out of a total recording of 80 seconds which was used in this paper.
The two segments differ mainly in the duration of the cycles. Other features,
like the u—shaped P—wave prior to the big ventricular complex, remained
qualitatively constant during the recording period.
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Figure 2: Interbeat intervals obtained from the ECG recording shown in
Fig. 1. Analysis of much larger data bases of R—R-intervals show that such
signals are not usually deterministic chaotic, except maybe for pathological

cases.[3, 6]
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Figure 3: Delay representation with delay time 0.02 sec. of the ECG used in
Fig. 4.
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Figure 4: Noise reduction on an electrocardiogram. Upper: original data.
Below: data artificially contaminated with 50% typical baseline noise. Third:
data after cleaning with the optimal Wiener filter. Lower: data after nonlin-
ear noise reduction. The error relative to the original signal is reduced by a
factor of r = 3.16. Note the striking irregularity of the cycle lengths which
seems not to affect the noise reduction procedure.



for chaotic signals. While the predominant QRS complexes which reflect
the electrical depolarization of the ventricle are usually visible even in the
presence of rather strong noise, more subtle features like the atrial P—wave
(which normally occurs 120-200 ms before the peak of the QRS complex)
may be concealed by errors which are due the imperfect transmission of the
signal from the heart through different kinds of tissue, the electrode and the
electronic equipment. These errors are particularly serious for ECGs taken
during exercise (sweaty skin, muscle activity) and on long-term ambulatory
(Holter) recordings where the experimental conditions can not be controlled
that well. The peculiar twofold nature of ECGs (a pronounced pattern re-
peated with irregular intervals) makes it difficult to filter these signals with
Fourier methods. The continuous part of the spectrum is due to both the
measurement noise (we want to cancel) and to the irregular interbeat inter-
vals (we want to preserve).

2 Nonlinear Processing

In many nonlinear methods, the first step in the analysis of deterministic
time series is to reconstruct the phase space of the dynamical system, e.g.
using delay coordinates X, = (Zp—m41,-- -, Tn)-

Due to the random fluctuations of the cycle lengths, we cannot expect
the embedding theorems [8] to be completely valid here, especially near the
beginning of each beat. Nevertheless, the time-delay representation is very
useful to exploit the structure hidden in the scalar recordings, and the as-
sumptions of the embedding theorems may be well enough satisfied to allow
practical use to be made of the embedding technique. In this paper we will
use approximate projections locally in the reconstructed phase space to re-
duce measurement noise in the time series.

Let us now outline the nonlinear projection technique used to reduce
noise in the ECG signal. The technique has been discussed in detail for
the case of a deterministically chaotic signal plus measurement noise in [9],
examples with experimental data are given in [10]. ECGs are usually densely
sampled in which case any of the local schemes reviewed in [11] should work
about equally well. Consider for a moment a deterministic dynamical system
written in m dimensional delay coordinates: z, = f(2p—m,...,2n-1). We
perform a measurement which is subject to random fluctuations y, = x, +¢,.



Rewriting the dynamics in an implicit form f(:z;n_m, .o, &y) = 0 shows that
in an m + 1 dimensional delay coordinate space the noise free dynamics is
constrained to an m-dimensional hypersurface. For the measured values y,
this is not exactly true, but the extension perpendicular to this hypersurface
of the cloud of data points is only of the size of the noise level. Therefore one
can hope to identify this direction and to correct the y, by simply projecting
them onto the subspace spanned by the clean data. In order to do this,
one has to reconstruct this surface from the noisy data. Since ECGs cannot
be assumed to be deterministic we cannot expect that even the noise free
signal lies exactly on a low dimensional manifold. We will rather accept as
an empirical fact that the observed data remain close to such a manifold.

Technically, we proceed as follows. In an embedding space of dimension
m + 1 we compute the covariance matrix of all delay vectors in a small
neighborhood of a given point which we want to correct. The eigenvectors
of this matrix are the semi—axes of the best approximating ellipsoid of this
cloud of points. Now the important assumption is that the clean signal lives
near a smooth manifold with dimension d < m + 1, and that the variance of
the noise is smaller than the signal. Then for the noisy data the covariance
matrix has large eigenvalues corresponding to the directions occupied by the
signal and small eigenvalues in all other directions. Therefore we move the
vector under consideration towards the subspace of large eigenvectors to get
rid of the noisy components. See [9] for details.

If we want to compute the correction for the n-th embedding vector y,,, we
first form a small neighborhood ¢ around this point. The indices of the set of
points that fall into this neighborhood is denoted ,,, so that the neighboring
points are y;,7 € U,. |U,| is the number of points in the neighborhood. In
the following, the neighborhood size was set to the smallest value that gave
Emin neighbors, but no smaller than 50 units (cf. Fig. 1). From the points
Yk, k € U, we construct the mean

1
= Yk—m+1
|Z/{n| keldy, 7

1=0,....m (1)

and the (m + 1) x (m + 1) covariance matrix

1
C.; = 7 Ye—m+ilYk—m+5; — N5 - (2)
| 71| kel




We then introduce a diagonal weight matrix R and define a transformed
version of the covariance matrix I';; = R;;C;;R;;. In order to penalize cor-
rections based on the first and last coordinates in the delay window we put
Roo = R, = r where r is large. The other values on the diagonal of R are
1. The @ orthonormal eigenvectors of the matrix I' with the smallest eigen-

values are called e, ¢ =1,..., (). The projector onto the subspace spanned
by these vectors is then
Q
Qij = Y eqitq,- (3)
g=1
Finally the i-th component of the correction 6, is given by
1 m
Oni = 1~ Y QiR (1 = Ynomej)- (4)
it =0

This gives us the correction b_ which can be added to each embedded vector
to bring the point towards the manifold spanned by the m + 1 — @) largest
eigenvectors. Note that the R penalty matrix effectively makes the 2 largest
eigenvalues lie in the subspace spanned by the first and last coordinates of
the embedding space, and prevents the correction vector from having any
components in these directions.

This correction is done for each embedding vector, such that we end up
with a set of corrected vectors in embedding space. Since each element of
the scalar time series occurs in m + 1 different embedding vectors, we finally
have as many different suggested corrections, of which we simply take the
average. Therefore in embedding space the corrected vectors do not precisely
lie on the local subspaces but are only moved towards them. In contrast to
strictly deterministic data we do not iterate the procedure here: the signal
is not expected to be strictly confined to the manifold, only to be close to it.

3 Results

To demonstrate the effectiveness of the nonlinear noise reduction technique,
we apply it to two signals (upper panels in Figs. 4 and 5) from a publically
available database [5], which we artificially contaminate with noise. Let a,,
be the original ECG signal (which itself contains some measurement noise),



Y, the artificially contaminated signal, and ¢, the result of cleaning y,,. We
can define the noise reduction factor to be

((yn — 20)?)
((en —@n)?)

the factor by which the rms error is reduced. Since x,, was not really noise

T =

(5)

free we could succeed in cleaning y, beyond the accuracy of z,, whence
r is a lower bound on the true noise reduction factor. Let us stress here
that the rms error is not fully appropriate to represent the quality of noise
reduction on ECGs. Many features of clinical relevance, like the P—waves,
contribute little to the variance of the signal, which is dominated by the QRS
complex. This means that a procedure which minimizes the rms error does
not necessarily minimize the distortion of clinically important features. This
issue is also discussed in the next section.

We applied the procedure to two fairly clean ECG signals (upper panels
in Figs. 4 and 5) which we artificially contaminated with measurement noise
(second panels in Figs. 4 and 5). The signals we used are contained in a publi-
cally available database [5] of the Massachusetts Institute of Technology and
Beth Israel Hospital (Boston). The first example is an ECG sampled at the
clinically typical rate of 250 samples per second. The data was contaminated
with colored noise which has the same power spectrum as that part of the
signal itself which is close to the baseline (all points not belonging to one of
the QRS complexes). The noise amplitude is 50% (the signal-to-noise ratio
is -10dB).

In the second example (Fig. 5) we used Gaussian white noise of an rms
amplitude of 25% of that of the signal. With 250 samples per second, white
noise would be easily cleaned by a low pass filter. This becomes impossible
for more coarsely sampled data, like they appear e.g. in Holter recordings.
To demonstrate that our method is substantially different from a low pass
filter, the data was resampled to 50 points per second.

In both cases shown in Figs. 4 and 5 we embedded the time series using a
delay window of 500ms (corresponding to m = 125 and m = 25 dimensions
respectively) and projected onto a two-dimensional manifold locally. The
radius of the neighborhoods was chosen to be 50 units.

Table 1 summarizes the resulting rms noise reduction factors for both
examples. The first column shows the time span covered by the delay coor-
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Figure 5: Noise reduction on an electrocardiogram (from the same sequence
used for Figs. 1 and 2). Upper: original data. Middle: data artificially
contaminated with 25% Gaussian white noise. Lower: data after nonlinear
noise reduction. Many details (P and T waves) of the original series are
recovered. The error relative to the original signal is reduced by a factor of
r = 1.91. The lowest panel shows the remaining noise component, which is
largest during the QRS complexes.
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dinates used. A window of 200ms e.g. corresponds to an embedding dimen-
sion of 50 in the first and 10 in the second example. These high dimensional
embeddings are necessary to cover a significant fraction of a typical cycle
length. Trials using a delay time greater than one sample and smaller em-
bedding dimensions were found to yield inferior results consistently. The
noise reduction factor is smaller for the white noise example due to the lower
noise level and the smaller sampling rate. Otherwise, the table shows that
results are quite stable against changes to the parameters. We repeated the
analysis with ECGs from different subjects and noise levels and always found
very similar results. Let us note however that in order to further suppress
already very small noise, like for example in the “clean” signals we used, it is
necessary to have enough data in neighbourhoods as small as the noise am-
plitude. This requires many more ECG cycles and stationarity might become
a serious issue.

For a comparison we also applied an optimal Wiener filter [12] in the
spectral domain. In order to distinguish the signal and the noise in the
spectrum we made use of the spectrum of the noise which was known in
this particular case. Thus the performance of the filter can be regarded as
a very optimistic example: in real examples we have to guess the spectrum
of the noise from the data. Even with this aditional knowledge, the Wiener
filter gave only weak noise reduction (r = 1.33) for the first example and
almost no noise reduction (r = 1.05) for the second. Fig. 6 shows power
spectral estimates for the first example. The original clean data, the signal
after Wiener filtering, and the signal after our nonlinear noise reduction
procedure have very similar spectra. The spectra of the noise added (which
was also used for designing the Wiener filter. This produces a filter that is
somewhat more effective than the one that would be designed in practice,
where the exact spectrum of the noise is unknown.) and the noise subtacted
by the nonlinear noise reduction procedure are consistent as well. Although
both the linear and nonlinear cleaning procedures were able to recover the
spectrum of the original signal, the nonlinear algorithm yields much better
noise reduction, see Fig. 4 and Table 1. Although the power spectrum of the
Wiener filtered signal and the original are quite similar, the signals themselves
are quite different. Clearly the phases of the Fourier components are altered
by the addition of the noise in a manner that the Wiener filter cannot correct.
For the second example, the Wiener filtered signal is almost indistinguishable
from the noisy one and thus not shown.

11
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Table 1: Performance of nonlinear noise reduction with different choices of
the parameters of the algorithm.
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Figure 6: Power spectral estimates for the ECGs shown in Fig. 4. We show
the spectra of the original, the noisy, the Wiener filtered and the nonlinearly
cleaned data as well as the spectrum of the added noise which we also used
for the Wiener filter. The window length for the estimates in this figure is
128.
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4 Discussion

The aspects of the ECG that are utilized by clinicians are not in general well
represented in the spectral domain, and so cannot be expected to be well
preserved by linear filtering. This also means that the rms error is not a fully
satisfactory measure for the clinical usefulness of noise reduction on an ECG.
The clinically relevant features of the ECG are described in many textbooks
on the art and science of ECG interpretation (e.g., see [2]). Here, we mention
just a few: the interval between the onset of the P wave and the onset of
the QRS complex; the existence of a negative going () wave at the onset of
the QRS complex and whether it is big or small compared to the R wave;
the existence of notches in the QRS complex; the level of the ECG between
the S and T waves; the width of the QRS complex; the interval between
the onset of the QRS complex and the end of the T wave. Evaluating the
effect of filtering on the clinical readability of the ECG ultimately requires
assessing the accuracy of clinician’s diagnoses, which can be quite a difficult
undertaking. An example of such an assessment in the context of ECG
compression algorithms is given in [13] where the authors remark that “large
amplitude errors during rapidly changing portions of the QRS complex are
more tolerable than much smaller errors in the baseline which may conceal or
mimic P-waves.” The performance of our method on such features is found
to be satisfactory by inspection of Figs. 4,6, and 7; for instance, the clinical
used interval between the P—wave and QRS complex is easily discerned in
the cleaned data.

Since we know little about the dynamical nature of the ECG, we hesitate
to use projections down to a one dimensional manifold in order not to de-
stroy possible degrees of freedom which do not contribute significantly to the
rms error but may be clinically relevant. An example would be the variation
in ECG morphology during the respiration cycle or due to changes in the
heart rate. As Figs. 4 and 5 show, the method is able to handle quite large
fluctuations in the heart rate (see also Fig. 2). However, for nonstationary
ECGs which change qualitatively in time we would suggest to modify the
present algorithm by weighting neighbours according to their separation in
time from the current point. The implementation of such a modified algo-
rithm is subject to ongoing research.

In conclusion, we demonstrated that the scope of nonlinear techniques
of time series analysis developed for deterministically chaotic signals is not

14
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Figure 7: Identification of clinically relevant features (same data as in Fig. 5).
Left: clean data, middle: noisy data, right: noisy data after nonlinear noise
reduction. Note: The QRS complex is the large pair of deflections shown in
the middle of each frame. In cardiologists’ notation, the QRS complex can
be composed of one or more “waves” Here, a () and an R wave are present.
Were the recording made with opposite polarity, this same QRS complex
would be denoted as having an R and S wave.”

necessarily confined to such signals. We feel that applications which do not
strictly require determinism, like the one we presented above, are potentially
more fruitful than the repeated but still dubious claims that deterministic
chaos has been found in one or the other biological time series.

This paper does not attempt to present a filtering technique which can be
relied on in clinical situations. This would require much broader studies on
healthy and diseased subjects, in particular with respect to possible artifacts
which are not accounted for by the rms error measure. This scepticism is not
limited to our particular approach to noise reduction in ECGs: Any method
that can remove noise from a fluctuating signal without creating artifacts
needs to be based on some knowledge about the nature of the fluctuations.
Noise reduction in ECG signals remains hazardous as long as the fluctuation
of the heart rate are not better understood. Nonetheless, the ECG provides
an illustration of a situation in which signal processing techniques originally
developed for chaotic data can be naturally and effectively applied to practi-
cal data and can provide a superior alternative to traditional linear methods
(such as the Wiener filter) in a stochastic environment.

We are indebted to Leon Glass, Peter Grassberger and Holger Kantz
for stimulating discussions. This work was supported by the SFB 237 of
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