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Is Fibrillation Chaos?
Daniel T. Kaplan and Richard J. Cohen

Ventricular fibrillation is examined to determine whether it is an instance of deterministic
chaos. Surface ECGs from dogs in fibrillation were used to generate a state space representa-
tion of fibrillation. Our analysis failed to identify a low-dimensional attractor that could be
associated with fibrillation. The results suggest that fibrillation is similar to a nonchaotic
random signal. We note, however, that such random-looking but nonchaotic behavior can also
be generated by a nonlinear deterministic system. (Circulation Research 1990;67:886-892)

A lthough the heart is a complex biological
organ, simple mathematical descriptions of
its electrical activity often suffice.' 10 One

type of cardiac electrical activity that does not at
first sight seem amenable to simple mathematical
description is ventricular fibrillation (VF). In VF,
small sections of cardiac muscle contract in an
uncoordinated manner," leading rapidly to death.
VF has traditionally been described as "turbulent"
or "chaotic." Recently, however, it has been sug-
gested that there are fairly regular patterns under-
lying VF, as evidenced by studies of spatial electri-
cal activity during VF12 or the narrow power
spectrum of ECGs recorded during VF.13
The seemingly contradictory finding of order and

disorder in VF suggests that VF might be an instance
of deterministic chaos. This hypothesis has been
strengthened by observations that simple determin-
istic models of cardiac electrical conduction can show
fibrillationlike behavior.3'10 Furthermore, evidence of
a period-doubling in hearts susceptible to fibrilla-
tion14 corresponds to one theoretical description of
the transition to chaos from a nonchaotic behavior.
A finding that VF is chaos would suggest that there

is a simple mechanism at work in VF and would
provide guidance in the search for clinical precursors
to VF (e.g., a sequence of period-doublings). We
examine the question of whether VF is chaos by
attempting to construct a representation of a deter-
ministic system that can duplicate ECGs recorded
from VF. The results suggest that fibrillation is not
characterized by a low-dimensional dynamical system
and thus is not usefully thought of as being chaotic.
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Developments in the past decade in the field of
nonlinear dynamical systems theory15-'7 have empha-
sized the existence of mathematical and physical
systems that are deterministic yet do not allow long-
range predictions to be made accurately and that
appear turbulent or disordered. Such systems are
called chaotic, particularly when the system can be
described in terms of only a few dynamical variables.
The behavior of chaotic systems is irregular and
random-looking.
Although there is no universally accepted definition

of deterministic chaos, it is widely accepted that a
chaotic system has three attributes: 1) it is a determin-
istic dynamical system, 2) it has sensitive dependence
on initial conditions, and 3) it has an attractor.
A dynamical system is a system that at each

instance of time has a state and a rule that tells how
the state changes in time. The state is generally
written as a vector of quantities; the set of all such
states is called the state space (or phase space). For
example, in the case of a simple harmonic oscillator
(e.g., a mass on a spring) the state is the instanta-
neous velocity and position.

In a deterministic dynamical system the rule that
describes how the state changes with time can
depend only on the state. For each state there is only
one possible change in state with time. By plotting
out in the state space a succession of instantaneous
states, one draws the system's trajectory. In a deter-
ministic system, the trajectory can never cross itself.

Sensitive dependence on initial conditions refers to
whether nearby trajectories come closer together or
separate. To illustrate, consider two identical systems
(i.e., systems with identical rules governing their
dynamics) with slightly different initial states. If, as
time progresses, the two states drift apart, the system
shows sensitive dependence on initial conditions. A
trivial example is the dynamics of money in a bank
account: two accounts with identical interest rates
(i.e., identical dynamic rules) but with different initial
deposits will drift apart in their respective worths.
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Sensitive dependence on initial conditions is
responsible for the difficulty in predicting the future
state of chaotic dynamical systems. Any error in
estimating the initial or current state of the system
will be magnified in future predictions.
An attractor is a region of state space to which all

nearby trajectories eventually tend. For instance, the
attractor of a damped harmonic oscillator is the
single point (velocity=0, position =0). Dynamical sys-
tems generally have an attractor when there is some
mechanism that takes "energy" out of the system.
When a system has an attractor and sensitive

dependence on initial conditions, the dynamics often
appear turbulent.* This is because sensitive depen-
dence is pulling apart nearby states (stretching),
while the dissipation that gives rise to the attractor is
bringing together distant states (folding).
One of the most useful quantities to use in char-

acterizing a chaotic dynamical system is the dimen-
sion of its attractor. Because the attractor is a subset
of the state space, it can have a smaller dimension
than the state space. Generally, the attractors of
chaotic dynamical systems have a noninteger dimen-
sion; that is, they are fractals. For instance, the
Lorenz equations have a three-dimensional state
space, while the attractor is of dimension 2.06.18
There are several means of calculating the dimen-

sion of an attractor. One way, by Grassberger and
Procaccia,18 is to count the number of pairs of points
C(l) on the attractor closer together than distance 1.
The dimension is

d logC()
d log 1

The dimension (v) can be considered a function of
the length scale (1), although for mathematical
objects one generally considers the limit as 1->0.

If a dynamical system is deterministic, the trajec-
tory cannot cross itself in state space. When the state
space is dimension 3 or higher, one cannot expect the
trajectory actually to intersect itself in any finite
length of time. Rather, if the system is not determin-
istic, different sections of the trajectory will approach
one another closely and approximately orthogonally.
However, the inevitable presence of noise, either
measurement or affecting the system dynamics,
destroys the strict determinism of the system. Noise
imposes a characteristic length scale on the system
(corresponding to the signal/noise ratio) and has the
effect of fattening the trajectory from a line into a
tube whose radius is that characteristic length scale.
Sections of the trajectory that run together through
the same tube are indistinguishable and should not
be regarded as evidence for the nondeterminism of
the idealized, nonnoisy system. The near-crossings of

*Some physicists have informally made a distinction between
"chaos" and "turbulence." They call a system turbulent when it is
genuinely complicated, involving a large number of degrees of
freedom, and chaotic when the system appears irregular but the
dynamics are simple, involving only a few degrees of freedom.

interest are cases where the tubes come together
approximately orthogonally, that is, crossings where
the trajectories are distinguishable at first and then
become indistinguishable.
To test for the existence of such near-crossings,

one constructs a putative state vector of dimension n.
This dimension is called the embedding dimension.
The dimension of the trajectory in the n-dimensional
state space is calculated. Call this v,(l). Next, the
process is repeated for a state vector of higher
dimension. For a nondeterministic system where
there are many near-crossings in many directions in
the putative state space, vn(l) increases with n. For a
deterministic system, vn(l) saturates at some n (at
least for 1 greater than the length scale imposed by
noise) because the trajectory is untangled by the
higher-dimensional embedding and at some n is
completely untangled. At larger n, vn(l) decreases
because of the finite length of the signal used to
construct the trajectory. The maximum Vn(l) (maxi-
mizing over n) is the dimension of the attractor at
length scale 1. In general, one tries to look for an 1 at
which v(l) is constant, that is, a plateau in the graph
of v versus 1.
Once it has been established that the system is a

deterministic dynamical system, the questions of the
existence of an attractor and sensitive dependence on
initial conditions can be addressed. The existence of
an attractor is demonstrated if the addition of more
data does not change the dimension vn(l) and does
not cause the trajectory to visit new regions of state
space (this presumes that start-up transients have
died out by the time the initial data were collected).
Sensitive dependence on initial conditions can be
established by looking for positive Lyapunov expo-
nents by the method of Wolf et al,19 for example.
Previous work by several groups has applied dimen-
sional analysis to biomedical signals. Babloyantz and
Destexhe, Mayer-Kress, and others have examined
EEGs,20'2' vector ECGs,22 and heart rate.23 This
research has suggested that the dimensional analysis
shows a finite dimension for the systems that gener-
ate these signals. Some of the difficulties of dimen-
sional calculations in these types of systems are
discussed in the literature.24-26

Methods
To test the hypothesis that fibrillation is chaos, we

sought to determine whether fibrillation satisfies the
three components of the definition of chaos given
above. The first step is to construct a dynamical
system representation of fibrillation that can then be
tested for determinism and the existence of an attrac-
tor. Because one generally does not measure the
actual state vector of a system, a surrogate state
vector must be constructed from measured signals.
This can be done by using lagged values of the
measured signal, a method that has been theoreti-
cally justified by Takens.27
The data used in this study were three-lead surface

ECGs from dogs in which fibrillation had been
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induced electrically or in which it had occurred
spontaneously. The data were collected in a series of
experiments performed by Smith et al.14 Four epi-
sodes, each from a different dog, were studied. The
dogs used were in a variety of states, hypothermic or
rewarmed from hypothermia, with coronary artery
ligations and without. In many cases, fibrillation had
been induced one or more times previously and
terminated with electric shock. The episodes of VF
were uninterrupted by attempts to terminate or
modify the fibrillation, and the animals were on
mechanical respiration at a fixed rate.
ECGs were collected from three approximately

orthogonal leads and recorded in analog form on an
FM tape recorder (tape speed, 9.5 cm/sec, 3 dB;
cutoff 0-500 Hz). Later, the analog signal was
replayed into an analog low-pass filter for antialiasing
purposes (360-Hz cutoff, five-pole Butterworth) and
digitized (12 bits) at 1,000 Hz. Because there was
negligible energy above 30 Hz in the power spectrum
of fibrillation, the antialiasing filter would have little
effect on the signal of interest, serving only to remove
noise. In particular, phase shifts introduced by the
analog filter do not affect the signal of interest,
because these phase shifts occur only near the filter's
cutoff frequency. The digitized data were filtered to
remove respiration artifact by use of a 1,027-point,
zero phase-shift digital high-pass filter with cutoff at
2 Hz. In all cases, the spectrum of the unfiltered
signal had a large peak at respiration frequency
(usually 0.25 Hz, corresponding to 15 breaths/min)
and very little spectral content between 1 and 4 Hz.
While this filtering cannot remove respiratory influ-
ence on fibrillation, it does remove the obvious
respiratory artifact from the ECG.
The power spectrum of the ECG from the episodes

of fibrillation we examined is consistent with that
found by Goldberger et a113 and Herbschleb et al,28
namely, a fairly narrow peak (see Figure 5).
For each episode of VF, several signal segments

were generated from an 8-second segment of signal
starting 1-2 seconds after the change from a tachy-
cardialike rhythm to fibrillation. The signal segments
ranged from 2 to 8 seconds at sampling rates of 62.5,
125, 250, and 1,000 Hz. The reduced sampling rates
were achieved by digital decimation (i.e., taking every
nth point). No additional antialiasing filtering was
done; however, the power spectrum of the original
signals showed negligible energy above 30 Hz.
With the method of lags, a 21-dimensional vector

signal was constructed. This vector signal consisted,
at each time point, of the original three-channel
ECG and six lagged values of the three-channel ECG
separated by r. The calculations were repeated for
three different r values ranging from 30 to 100 msec
(total window length, 180-600 msec). A common
technique for establishing a minimum value for r uses
the first zero-crossing of the autocorrelation func-
tion, in this case approximately 30 msec. However,
because the envelope of the autocorrelation function
decays slowly, it is appropriate to investigate larger

(a) 1st PC
.

(b) 1st PC
.... 1...

I
(C)

2 secs

FIGURE 1. Projections onto two dimensions of the trajectory
drawn in a 21-dimensional embedding. The two dimensions
chosen correspond to the two largest principal components
(PCs). Panel a: The trajectory of 4 seconds of atrially paced
rhythm. Panel b: The trajectory of 4 seconds of fibrillation.
Panel c: One lead of the three-lead ECG fiom which the data
plotted in panels a and b were taken. The segments used are
indicated by the horizontal line segments.

values of r. Another technique for setting r makes
use of the mutual information in the time-delayed
versions of the signal.29 Because the results were
substantially independent of r, we report here the
results only for r=50 msec.
The method of principal components30 was used to

select smaller-dimensional subsets from the 21-
dimensional vector. To make an n-dimensional puta-
tive state vector, the n largest principal components
of the cloud of points in the 21-dimensional space
were selected. The trajectory was determined, and
the dimension of the trajectory was calculated for
n=5, 9, 13, and 21. When calculating the dimension
for segment lengths less than 8 seconds, an average
was taken of C(l) from several overlapping segments
that fit within the overall 8-second segment.

Altogether, then, 144 different dimension calcula-
tions were done on each fibrillation episode (4 sam-
pling rates x 3 segment lengths x 3 lag values x 4 state
space dimensions).

Finally, for each of the four sampling rates and three
segment lengths, a random signal was generated that
had an indentical power spectrum to the original. The
dimension calculations were repeated on the random-
ized signals for r=50 and n=5, 9, 13, and 21. All
calculations were performed on a SUN 3/60 worksta-
tion (Sun Microsystems, Mountain View, Calif.).

Results
Figure lb shows the slice of phase space corre-

sponding to the two largest principal components of
a 4-second segment of fibrillation. The figure illus-
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(c) 125hz
FIGURE 2. Dimension as a
function of length scale [v(l)] for
one of the episodes offibrillation.
An 8-second segment was used,
and v(1) is shown at three sam-
pling rates. Above each graph, a
short segment (0.25 second) ofthe
signal is marked to indicate the
particular samples at each sam-
pling rate.

3

Length scale Length scale

trates that a two-dimensional state is not sufficient to
represent fibrillation as a deterministic system: the
trajectory is highly tangled. In contrast, the state
space plot of an atrially paced, nonfibrillatory rhythm
(Figure la) suggests that the dynamics of normal
rhythms are deterministic.
Rather than relying on pictorial representations of

the system trajectories, which are restricted to two
dimensions, the vP(l) calculations allow high-
dimensional state spaces to be investigated. Figure 2a
illustrates the results of the dimension calculations
for one episode of VF, with a segment length of 8
seconds, r=50 msec, and a sampling rate of 500 Hz.
The graph shown is representative of all the episodes
studied, at all r values. At length scales of approxi-
mately 10-30, there is a plateau with v,,1. In
contrast, Figure 2c shows vP(l) when the sampling
rate is 125 Hz. The plateau has disappeared, and vP(l)
increases with n for just about any 1 chosen.

Figure 3 summarizes the results from all four
episodes of VF for the different segment lengths.
Each symbol in the plot corresponds to a vn(l) curve;
the 1 used was chosen by eye to be that at which vn(l)
appeared to "level out." The error bars correspond
to the estimated uncertainty in the estimate of -v,,.
Mayer-Kress24 has proposed a method for estimating
a dimension from a vn(l) curve; he suggests finding

the region of that curve best fit by a straight line of a
certain length. Although this technique works well
when a system has a well-defined dimension, it
underestimates the dimension of noisy signals.

Figure 4 presents the difference between the
dimension of each VF episode and the corresponding
randomized signal. A negative value means that the
randomized signal has a higher dimension than
the VF episode.

Discussion
There is much imprecision and reliance on judg-

ment that goes into the selection of a length scale and
the estimate of a dimension for a signal. Unfortu-
nately, there is little theory to guide the objective
choice of a specific length scale of importance.

Nonetheless, one artifact of the calculation can be
pointed out and avoided: the plateau at v:1 in
Figure 2a is not an attribute of VF, but of the high
sampling rate of 500 Hz. In traditional signal proc-
essing, sampling at unnecessarily high rates (above
the Nyquist frequency) merely adds redundancy to
the signal. In the case of dimensionality calculations,
however, oversampling biases the calculations toward
low dimension. This occurs because, at too high
sampling rates, the sampled points on the trajectory
are like closely spaced beads on a string. At small

(a) Length: 1 Sec.
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FIGURE 3. The estimated dimensions (v) found for
various embedding dimensions with various segment rates

8 Secs. as indicated. Each episode of fibrillation is plotted as a
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2 (b) Length: 2 Secs.
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Embedding Dimensi

length scales only the one-dimensional structure of a
single strand is evident; the overall structure of the
attractor is lost. The following standard can be
applied to determine whether a signal is oversam-
pled: if it is predominantly the case that nearest
neighbor points in state space are points that were
sampled consecutively, the trajectory is oversampled.
When oversampling is compensated for by decima-

tion, the dimensionality results in Figures 3 and 4
suggest that a low-dimensional deterministic system
cannot be constructed to describe the episodes of VF
studied here and that there is no significant differ-
ence between VF and a randomized signal with the
same power spectrum.
One important issue is that of stationarity: the

condition of the heart is gradually deteriorating
during VF. We attempted to deal with this problem
by using short segments of data. However, we cannot
rule out the possibility that the state of the heart is
changing even during the 2-second data segments
used. The use of even shorter segments would not
solve the problem, because the dimension calcula-
tions become unreliable for very short segments.24

It is possible that a high-dimensional deterministic
description of fibrillation does exist. However, deter-
mining reliably that a high-dimensional attractor
does exist takes a considerable amount of data; one

'i.'

0-

Simulated FibrWlation from Dynamical System
(a)

Time Serines

(b)

Power Spectrum
of SimuLated
Fibriation

10 20 30
Frequency (hz)

20 FIGURE 4. The difference between the dimension esti-
mate (As v) for each episode offibrillation and the corre-

sponding randomized signal.

20
ion

rule of thumb is that for an m-dimensional attractor,
10"' points are needed. Figure 3 suggests thatm might
be no less than 8. At 125 Hz, more than 200 hours of
VF data would be required!
To verify the validity of the methods, we used a

deterministic chaotic system to generate a signal
similar to fibrillation (see Figure 5). As our control
deterministic chaotic system, we used the Lorenz
equations.31 We integrated numerically the three
differential equations of the Lorenz system, setting
the time scale so that the resulting signal would have
a peak at approximately 10 Hz. The z-component of
the Lorenz system has a pattern that is superficially
similar to a fibrillatory ECG. To enhance this simi-
larity, we bandpass filtered between 5 and 16 Hz
(using a 127-point finite impulse response filter). The
power spectrum of the resulting signal, which we will
refer to as z(t), and a portion of the signal are shown
in Figure 5.
Because the Lorenz equations are completely deter-

ministic and three dimensional, the dimension of their
trajectory can be no larger than 3. The bandpass
filtering may obscure the shape of the attractor, but it
can be expected that the bandpass-filtered signal
should have a dimension between 2 and 3.
We sampled z(t) at 100 Hz and took segments of 1,

2, 4, and 8 seconds. Each of these segments was

FIGURE 5. A portion of a fibrillationlike signal synthe-
sized from a chaotic deterministic dynamical system. The
power spectrum of this signal and the power spectrum of a
representative episode offibrillation are shown.
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TABLE 1. Estimated Dimensions of Simulated
Fibrillation Signals

Signal
(seconds) z(t) zr(t) zz(t) ZZr(t,)
1 4.5+1.5 4.0±1.5 4.0±1.5 3.0±1.5
2 3.5±1.0 5.0±1.0 4.0±1.0 4.5±1.0
4 3.0±0.7 6.0±0.7 4.5±0.7 6.0+0.7
8 2.5±0.5 6.5±0.5 5.0±0.5 6.5±0.5

z(t), Power spectrum; zr(t), phase-randomized version of z(t);
zz(t), vector signal; zzr(t), phase-randomized version of zz(t).

individually subjected to a dimensionality calculation
with a maximum embedding dimension of 21 and a
maximum window length of 500 msec. The same
analysis was done on a phase-randomized version of
z(t), called zr(t).

In addition, we repeated the analysis on a vector
signal, which we will refer to as zz(t), consisting of two
independent realizations (with slightly different
parameters) of the bandpass-filtered z-component of
the Lorenz equations. This system should theoreti-
cally have a dimension between 4 and 6. The phase-
randomized version is denoted zz,(t). The results are
shown in Table 1 for an embedding dimension of 21.
For the low-dimensional dynamical system repre-

sented by z(t), the method is easily able to distinguish
between the deterministic signal and the randomized
signal for signal lengths of 4 seconds or greater. The
distinction is present but less marked between the
higher-dimensional signal zz(t) and the correspond-
ing randomized signal. The results suggest that to
look for a low-dimensional attractor of dimension
2-3, at least 4 seconds of data should be analyzed.
For an attractor of dimension between 4 and 6, at
least 8 seconds of data should be used.
These results are derived for signals with a spec-

trum similar to dog fibrillation that has a spectral
peak near 10 Hz. For human fibrillation, the spectral
peak of which is near 6 Hz, the necessary segment
lengths would be correspondingly longer.
To address the question of whether nonstationarity

of the heart during VF was strongly affecting our
results, we examined the dimensionality of simulated
ECGs from a simple deterministic finite-element
model of cardiac electrical conduction, which mimics
fibrillation. The model has been described else-
where.3,32 The model used was a two-dimensional
array of 4,000 hexagonal elements arranged into a
cylinder with circumference of 80 elements. An ele-
ment fires when stimulated by a neighbor's firing,
after which it remains refractory for a preassigned
time. The refractory periods were spatially inhomo-
geneous, with a uniform distribution of mean 34 time
steps and half-width of 18 time steps. The model was
stimulated every 34 time steps for 1,000 time steps,
and then stimulation was stopped. After 9,000 more
time steps were allowed to elapse, simulated ECGs
were collected.
The model was run for several thousand refractory

cycles (i.e., the time it takes for a cell to fire, recover,

and fire again), corresponding to approximately 10
minutes of dog VF. The dimensionality results for the
model data were very similar to those of real VF; in
particular, v,(l) did not saturate even for embedding
dimensions up to 200. However, the model tended,
after such long times, to stop fibrillating spontane-
ously. This means, at least in the model, that fibril-
lation is not an attractor, but rather a transient.
Crutchfield and Kaneko33 have pointed out other
examples of spatially distributed systems that
undergo long transients and have labeled such behav-
ior quasistationary transients.
The fibrillatory ECG signals analyzed here provide

no evidence that fibrillation reflects a dynamical sys-
tem with a low-dimensional attractor. The dimension-
ality calculations are largely consistent with fibrillatory
ECGs being random white noise passed through a
coloring filter. This does not necessarily imply, how-
ever, that fibrillation is not deterministic; the finite-
element model of cardiac conduction provides an
example of a deterministic dynamical system that can
generate random-looking, yet nonchaotic, behavior.
The results presented here may appear to contra-

dict earlier findings by Goldberger et al13 that fibril-
lation is an orderly phenomenon. These findings
were based on observations of a narrow-band power
spectrum for fibrillatory ECGs for 1-second seg-
ments. While the power spectra of the episodes of
fibrillation we studied were similar to those reported
by Goldberger et al13 and Herbschleb et al,28 our
analysis implicitly includes consideration of the
phases as well as amplitudes of the spectral compo-
nents of fibrillation. That is, our analysis indicates
that despite the narrow power spectrum of fibrilla-
tion, it is disordered.

In contrast, prefibrillatory ECGs have a dimension
near 1: they are highly ordered. The comparative order
of prefibrillatory signals is apparent in Figure la.

So, is fibrillation chaos? There is little evidence
from dimensionality calculations to support the con-
tention that fibrillation is chaos. If fibrillation is
chaos, it appears to arise from a high-dimensional
system. Because the numerical tools used to study
experimental chaotic systems are practical to use only
for low-dimensional systems, we conclude that there
is little utility in classifying fibrillation as chaotic.
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