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�Surrogate data� is the basis for a technique for testing a time series for nonlin�

ear dynamics and process nonstationarities� The theory behind surrogate data

is brie�y described� along with an algorithm for generating it� Examples are

given of its use in detecting nonlinearity in heart rate signals� detecting non�

stationarity� and estimating the sampling distribution of complicated statistics

of heart rate variability�

�� Introduction

In studying heart rate and blood pressure variability� one is faced with a dilemma� The mechanisms

regulating the cardiovascular system are known theoretically to contain many nonlinearities� and

the system as a whole is known to be nonstationary� Yet the dominant techniques for analyzing

time series � for example� spectral analysis � are based in the assumptions of linear dynamics and

stationarity� The ultimate resolution to this dilemma may come in the form of improved time series

analysis techniques that can cope optimally with nonlinearities and nonstationarities� This report has

a much more modest goal� to describe newly developed techniques using �Surrogate Data� to detect

nonlinearities and nonstationarities in data� Detecting nonlinearities � or failing to detect them �

allows us to know when linear analysis techniques are and are not capturing all of the information in

the time series� Detecting nonstationarities allows us to make informed decisions about issues such as

whether collecting longer runs of data provides better estimates of physiological variables� or about

which are the best analysis techniques that can allow us to track changes in the physiological system

without unnecessarily increasing the variance of the estimates�

��� Nonlinearity

There are many sources of nonlinearity in cardiovascular regulation� One of the earliest to be given

a mathematical formulation is the interaction between sympathetic and parasympathetic innervation

of the SA node� as described by �Rosenblueth and Simeone� ��	
�� Other commonplace physiological

mechanisms also correspond directly to mathematical nonlinearities� adaptation of the baroreceptors to

changes in blood pressure� saturation of receptors� changes in gain of feedback systems with changing

baseline levels of blood pressure� reduction in cardiac output at high heart rates� Delays are ubiquitous

in physiological systems� Coupled with high gains in feedback loops� delays cause instability� Such

instabilities are always associated with nonlinearities� in a linear system instability leads to a physically

impossible blowup to in�nity� Guyton�s textbook introduction �Guyton� ����� to cardiovascular

control is practically a catalogue of nonlinear mechanisms�

It is now widely appreciated that nonlinear systems can show irregular oscillations without any

random input� This is called �chaos�� Linear systems without an input are uninteresting� they decay
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to a steady state� To produce irregular oscillations in a linear system requires an input that is itself

irregular� such as white noise� The existence of nonlinear mechanisms in physiological control systems

raises the possibility that irregularlooking physiological variability may not be entirely the response

to a changing external environment or changing demands on the system �i�e�� a changing �input�� but

may be in part a �selfoscillation�� For instance� it has been suggested �Goldberger et al�� ����� that

enabling physiological systems to adapt rapidly to external changes requires that they be unstable�

containing the instability within physiologically acceptable bounds requires nonlinearity and leads to

selfoscillations�

Selfoscillations are not obscure and esoteric things� they are as familiar as a pendulum clock� In the

cardiovascular system� the well known ��second oscillation likely re�ects a selfoscillation arising from

delays and highgain in the baroreceptor feedback loop� Other selfoscillations are seen in vasomotion�

renal vascular control �HolsteinRathlou and Marsh� ������ CheyneStokes respiration� and of course

the rhythmic �ring of the SAnode itself�

Despite the existence of nonlinear mechanisms and observed nonlinear phenomenon� it might be

that linear time series analysis techniques are adequate� An oscillation with a regular period will appear

as a peak �or series of peaks� in a power spectrum� regardless of whether the oscillation is caused by

a linear or nonlinear mechanism� The interaction of many cardiovascular feedback loops� together

with random environmental in�uences� may eliminate detectable traces of nonlinearity from the time

series� even though the time series is caused by nonlinear mechanisms� So� our theoretical knowledge

about the existence of nonlinear mechanisms is not in itself su�cient to justify using nonlinear analysis

techniques on time series � we need tests to know when nonlinearities appear in the time series itself�

and when they can be safely disregarded� Surrogate data provides us with such tests�

��� Nonstationarity

Nonstationarity is also an important problem in studying signals from the cardiovascular system�

Obviously� it would be unreasonable to expect unchanging signals from a subject whose level of physical

activity is changing� or whose posture is changing� or whose mental or emotional state is changing� The

solution to the problem of nonstationarity might seem to be to hold the subjects at a constant level of

physical activity� of posture� and a constant mental or emotional state� In addition to the experimental

di�culties in doing this� there are more subtle and less controllable di�culties� Many physiological

control systems adapt over a period of minutes� hours or days� Having a subject rest quietly for one

half hour before the beginning of measurements does not eliminate this process of adaptation� In a

nonlinear system� it should not be expected that rapidly adapting systems will rapidly reach a steady

state� the more slowly adapting systems may force a readaption by the rapid systems� In addition�

normal humans have a circadian rhythm which can be expected to cause changes over the course of

hours in core body temperature and mental state� Hormones such as growth hormone are released in

a pulsatile manner�

A challenging problem in studying longterm heart rate and blood pressure concerns ��f noise�

The heart rate and blood pressure are known to display variability that is approximately described

by a power law over time scales of tens of minutes to days� This powerlaw variability means� for

example� that there is no well de�ned mean or variance� the measured mean or variance will depend

on the time scale used to make the measurement� Taking more and more data will not improve the

quality of the measurement�

One approach to dealing with nonstationarity is to transform the time series so that it becomes

statistically stationary� For example� taking the �rst di�erence of an �
hour RRinterval time series

will eliminate the statistical nonstationarity of the mean and variance� The motivation behind such
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statistical tricks is that the underlying process may be unchanging� but our measurement may not

re�ect this� A simple example is a random walk� the walker takes a sequence of steps in random

directions� Over time� even though the mechanism is unchanging� the walker�s position will drift�

Taking a �rst di�erence transforms the measurement to one that re�ects the statistically unchanging

random steps� Unfortunately� techniques such as �rstdi�erencing cannot magically transform any

nonstationary signal into a stationary one�

In physiology� nonstationarity may stem from changing mechanisms� and we may desire to track

these changes� This can be done by dividing up a long data record into short segments �or using more

sophisticated techniques such as timespectral analysis or wavelets�� The basic question is� �How long

a segment is appropriate�� If the segment is too short� the estimates made from the data may be

poor� If the segment is too long� the estimates may be unacceptably in�uenced by nonstationarity�

Surrogate data can help us to decide whether data are nonstationary� and what length segment is

appropriate for analysis�

In the following� the original time series� the one we want to test for nonlinearity or nonstationarity�

will be termed the test data�

�� Surrogate data

Surrogate data was initially developed to deal with the question� �Can we demonstrate the existence

of deterministic chaos in a time series�� The answer� it turns out� is no� at least unless some additional

assumptions are made�

The problem with using data to demonstrate chaos is that any measured signal is consistent with

a linear system driven by some input� and linear systems can never be chaotic� For example� Figure

�a shows test data from the famous chaotic Lorenz equation� Given a linear model for the dynamics

underlying the time series� we can deduce what the input to the linear dynamics must be � these

deduced inputs are termed �residuals�� Figure �b shows the residuals when the posited linear model

is the �optimal� �ndorder linear autoregressive model� Note that the variance of the residuals is ����

much lower than the variance of the test data �

���� This might suggest that the model is explaining

more than ��� of the energy in the test data� Use of higherorder models �Fig� �c� suggests that

linear models might �explain� more than ����� of the energy in the test data�

In this case� the linear models actually explain very little of the signal� We know this because the

equations that produced the signal are nonlinear� and involve unstable �xed points in an essential way�

But if we did not know the equations of the system� how could we tell just from the data that a linear

model is not explaining the data�

If the linear model itself were doing a good job of explaining the data� then the output of the model

should not depend critically on the particular inputs used� So� we could ask either of two questions�

�� Do the residuals themselves contain some structure that we do not expect them to� For example�

we might expect that the residuals from a successful linear model should be random white noise

with a gaussian distribution�

�� If we run the model with random inputs �e�g�� gaussian white noise�� do we produce an output

that is similar in important ways to the measured signal�

Which of these two questions is the proper one to ask� Traditionally� the approach has been to

examine things such as the whiteness of the residuals using tests for which the sampling distribution is

known� For instance� Jenkins and Watts �Jenkins and Watts� ����� give a test for the whiteness of a

time series based on the sample integrated periodogram� and give con�dence intervals for white noise�

	



�a� zcomponent
of the Lorenz
Equations�
Variance�

��

0 100 200 300 400
0

10

20

30

40

50

�b� Residuals to
AR��� model�
Variance�����

0 100 200 300 400
-10

-5

0

5

�c� Residuals to
AR��� model�
Variance����


0 100 200 300 400
-3

-2

-1

0

1

2

Figure �� Output of the Lorenz equations� and the deduced inputs to a linear system producing this output�

to test a given time series for whiteness� one need merely see if the sample integrated periodogram

falls outside of the con�dence intervals� Such tests rely on the ability to construct such con�dence

intervals� and it is not always known how to do this�

Suppose that the characteristic of the inputs that we want to probe involves a statistic for which we

do not know the con�dence intervals� For example� we might want to test the residuals from the linear

model to �nd out if they are themselves chaotic� It is well known that many chaotic systems produce

time series that pass conventional tests for whiteness� and so we need to use a statistic that tests for

characteristic other than whiteness� In section we will describe brie�y three nonlinear statistics that

are useful in testing for chaos� the con�dence intervals are unknown for these statistics for random

white noise�

In such a situation� we can use bootstrapping to estimate the con�dence intervals for the statistic�

We simply generate many realizations of white noise by� for example� randomly shu�ing the order of

points in the residual time series� Then we calculate the value of our favorite statistic on each of these

time series� The distribution of these values indicates the con�dence intervals for our statistic�

The bootstrapping technique can also be used to address question ���� First� we pick a statistic

that quanti�es some important aspect of the test data� Then� we generate many realizations of white

noise� and pass these through our linear model to produce realizations of the output of the linear

process� The statistic can then be calculated for each of these linear outputs� and we can directly

compare the value of the statistic for the test data to the distribution of the statistic for the output

realizations�

A problem with the technique just described is that we need to specify the linear model to use� This

involves picking a model order� which is an arbitrary decision� and is called a �nuisance parameter��

�See �Theiler and Pritchard� ������� If the selected model order is too small� then we unfairly limit

the ability of the linear system to model the data� If the selected model order is too high� then we will

be over�tting the data and will introduce spurious correlations in the bootstrapped outputs� We can

avoid the problem of the nuisance parameter by using the surrogate data technique�

Surrogate data is constructed to have the same power spectrum and� hence� the same autocorre
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Figure �� Steps in the generation of surrogate data� Steps � and �� which produce a result in the Fourier
domain rather than the time domain� are not shown here� �The test data is the Wolper sunspot numbers��

lation function as the test data� Since optimal linear models are estimated from the autocorrelation

function� surrogate data is described by the same optimal linear model for any model order� But we

do not need to pick a model order to generate the surrogate data� Instead� a threestep procedure is

used�

��� Calculate the discrete fourier transform of the test data� This consists of an amplitude and a

phase at each frequency�

��� Randomize the phase at each frequency to be uniformly distributed in ��� ���� �Preserve the phase

asymmetry around frequency ���

��� Take the inverse fourier transform�

Since the amplitude of the fourier transform has not been changed� the power spectrum of the surrogate

data constructed in this manner is identical to the power spectrum of the test data� �The generation

of surrogate data is described in detail in �Theiler et al�� ����� and �Kaplan and Glass� �����

This procedure has one major �aw� the surrogate data has a normal �gaussian� histogram� whereas

test data often has a distribution that is signi�cantly nonnormal� Nonnormal distributions can be

created by dynamically trivial and uninteresting mechanisms such as nonlinear measurement functions

�e�g�� we measure the square of a normally distributed variable rather than the variable itself�� In order

to avoid problems with comparing nonnormal test data to normal surrogate data� we add two steps

to the sequence for generating surrogate data� as proposed by �Theiler et al�� ������
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��� Before taking the DFT of the test data� apply a static nonlinear transformation to give the test

data�s distribution a normal shape� This is e�ectively done through sorting algorithms� �See

�Theiler et al�� ����� and �Kaplan and Glass� �������

��� After phase randomization and taking the inverse DFT� transform the gaussian surrogate data

back to the distribution of the test data� Again� this can be done using sorting algorithms�

The sequence of steps is illustrated in Figure �� We can generate di�erent realizations of surrogate data

from one test data set by using di�erent random numbers in step ��� of the surrogate data generation

process� Some examples are shown in Figure 	�
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Figure �� Four examples of surrogate data generated from the Wolper sunspot test data

��� Properties of Surrogate Data

Surrogate data has two important properties that concern us here�

�� Surrogate data has no dynamical nonlinearities� By construction� surrogate data is equivalent to

passing gaussian white noise through a linear �lter� This is practically the de�nition of a linear

stochastic system�

�� The process that generates surrogate data is stationary� If we think of the linear �lter that

is coloring the gaussian white noise inputs as the dynamical process� then that process is not

changing during the duration of the surrogate data�

Note that process stationarity is not the same thing as stationarity of the data itself� We can�

for example� generate surrogate data from ��f noise � the original data will be nonstationary �the

variance is unbounded as the signal length increases� and the surrogate data will also be nonstationary�

However� the process that generates the surrogate data does not change between� say� the �rst half of

the data set and the second half�

There are a few situations that can cause surrogate data to be a misleadingly poor match to the

test data� even though the power spectrum and histogram are the same in the surrogate and test

data� One situation that is particularly common in studying heart rate data concerns the presence

of sharp spikes in the RRinterval series that might arise from ectopy or false Rwave detection� The

surrogate data technique turns these spikes into white noise� Even though the power spectrum of the

surrogate and test data are identical� the spikes are highly localized in time in the test data but spread

throughout the surrogate data� Technically� such spikes are themselves evidence for nonlinearity or

nonstationarity� But insofar as one is not interested in the dynamics underlying the spikes� one should

be careful to remove them from the data set� even a single spike can have a statistically signi�cant

e�ect on surrogate data� as shown in Figure 
�

�



0 250 500 750 1000

Beat Number

0.5

1.0

1.5

R
R

 In
te

rv
al

0 250 500 750 1000

Beat Number

0.5

1.0

1.5

R
R

 In
te

rv
al

0 250 500 750 1000

Beat Number

0.5

1.0

1.5

R
R

 In
te

rv
al

Figure �� �top� Simulated RR	interval data with a single false QRS detection� �middle� Surrogate data
generated without amplitude adjustment� �bottom� Surrogate data with amplitude adjustment�

�� Testing for dynamical nonlinearities in data

We can exploit the fact that surrogate data contains no dynamical nonlinearities in order to test

for dynamical nonlinearities in data� The �rst step is to choose some discriminating statistic that

summarizes some information of interest that pertains to the dynamics of the system� �Three such

statistics are described brie�y in the next section of this report�� We calculate this statistic on our

test data� and also on a large number of surrogate time series� Our notation is as follows� S refers to
the value of the discriminating statistic on our test data� �S refers to the value of the discriminating
statistic on one realization of surrogate data�

The surrogate time series allow us to estimate how the statistic is distributed in the absence of

dynamical nonlinearities� If the value of the statistic for the test data falls into the distribution for

surrogate data� then our statistic does not allow us to distinguish the test data from the surrogates

and we have no evidence for dynamical nonlinearities� On the other hand� if the test data has a value

for the statistic that is outside of the distribution for the surrogate data� then we can conclude that the

test data is somehow di�erent from the surrogates� Now� if we assume that the dynamics underlying

the test data are stationary� we then have evidence that there is some dynamical nonlinearity in

the test data� Chaos is one example of a dynamical nonlinearity� but it is not the only possibility�

Other possibilities include nonlinear stochastic dynamics� such as for example amplitude or frequency

modulation with a stochastic modulating input� And� of course� nonstationarity is just an assumption

at this point�

There are two practical ways to assess whether the statistic for the test data falls into the dis

tribution for the surrogate data� parametric and nonparametric� In the nonparametric approach� we
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generate very many realizations of surrogate data� We count how many of these realizations have a

value �S that is more extreme than the test data�s S� Doubling this number gives us an estimate of
the probability that a realization of the null hypothesis can generate a value as extreme as S� �Or�
we might prefer to do a onesided test� in which we don�t need to double the number�� For example�

suppose we �nd that S � ���
 and that �� out of ��� realizations of surrogate data have �S � ���
�
Then we can estimate that the probability that a realization of the null hypothesis would have �S more
extreme than ���
 is �� ���� In this case� we are not justi�ed in rejecting the null hypothesis�
The parametric approach involves assuming that �S has a normal �gaussian� distribution� We

calculate the mean and standard deviation of �S� Call these � �S � and �� �S� respectively� The

�standard score� for S is then
Z �

�
�
�
�
�

S� � �S �

�� �S�

�
�
�
�
�

and the probability of �nding a Z as extreme as that measured from the test data� given that the

null hypothesis is true� is speci�ed by the complementary error function erfc�Z�
p
��� �For example�

the familiar 
��� when Z � �� and ����� when Z � 	� and so on�� It should be cautioned that the

distribution of �S is commonly nongaussian� and so the interpretation of the standard score ought to
be taken with a grain of salt� Further dietary caution is indicated because statistics calculated from

surrogate data may be biased by� for example� the amplitude adjusting steps �Kaplan and Theiler� in

preparation�� prudence suggests avoiding drawing dramatic conclusions based on a standard score of

� or 	� Despite the problems with the parametric approach� it has the advantage of giving a rough

indication of the signi�cance of di�erences between test and surrogate data with only a few realizations

of surrogate data� In addition� very large standard scores �e�g�� Z � ��� can suggest that di�erences

between test and surrogate data may be very strong� the nonparametric test cannot practically point

to such possibilities�

��� Three statistics for detecting nonlinearity

There is a potentially in�nite number of discriminating statistics that can be used to test for non

linearity using surrogate data� The only absolute requirement is that the discriminating statistic not

be directly derivable from the histogram of the time series� or from the autocorrelation function �or�

equivalently� the power spectrum�� This rules out the use of statistics such as the mean� variance�

skewness� kurtosis� and percentile ranges� which can be calculated from the histogram� and statistics

such as energy in a particular frequency band� locations of polls and zeros� or energy of the derivative

function� which can be calculated from the autocorrelation function� I will term such statistics linear

statistics� since they do not allow test data to be discriminated from surrogate data� �However� linear

statistics are useful in using surrogate data to test for stationarity� See below��

Beyond the injunction not to use linear statistics� not much is known about which statistics are

good for detecting nonlinearity in data� In the following� I will use three statistics that have all

been motivated by chaos� but there is no reason in principle not to use statistics motivated by other

concerns�

Nonlinear predictability constructs an ad hoc nonlinear model of future values of the time series

as a function of past values� The mean of the logarithm of the absolute value of the di�erence

between predicted and measured values provides the discriminating statistic� The most widely

cited implementation of nonlinear predictability is �Sugihara and May� ������ note that the

version used here di�ers in that a piecewiseconstant model is used as opposed to the piecewise

linear in �Sugihara and May� ����� and the use of the mean log absolute predition error as

opposed to the correlation coe�cient used in �Sugihara and May� ������
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��� continuity attempts to estimate the noise level in the data without constructing a model �Kaplan�

���
�� but assuming that the underlying dynamics are described by a continuous function�

Correlation dimension is the most widely known nonlinear dynamics statistic� Here� the �rule of

�ve� method of estimation is used �Theiler and Lookman� ���	��

��� Results on heart rate data

To illustrate the surrogate data technique� I provide two anecdotes of the analysis of heart rate data�

Figure � �top� shows a clear di�erence between the surrogate data and the test data using both �� and

nonlinear predictability� The di�erence is also seen in the return maps� the test data looks somewhat

like a �ower bouquet and has a narrow handle on the bottom right� while the surrogate data has a

more rotund shape� In fact� di�erences between the test and surrogate data are apparent by eye in

the time series themselves � the test data has four smooth dips that are absent in the surrogate time

series� Using techniques beyond the scope of this report� we can trace back the di�erences between

the discrimating statistics for the surrogate and test data to the dips� From the time series itself� we

can only speculate about the origin of these dips� perhaps the dips are a manifestation of deterministic

chaos� but this seems an unnecessarily dramatic conclusion� In this case� the surrogate data analysis

simply points to the dips as the origin of the statistically detected nonlinearity � the statistics say

nothing about the origin or physiological signi�cance of the dips�

Figure � �bottom� again shows di�erences between the test and surrogate data� In this case� the

di�erence is partly due to the nonstationarity of the data� this will be analyzed in Section 
�

��� Testing for nonlinearity of statistics

Researchers attempting to �nd useful ways of characterizing heart rate variability have found their mo

tivation in a wide variety of areas� One recently proposed heart rate variability statistic is Detrended

Fluctuation Analysis �Peng et al�� ������ which has been motivated �in my view� by the study of ran

dom fractals� and the powerlaw correlations seen in physics in critical phenomena and selforganized

criticality� Peng et al� were able to use DFA to discriminate between normal subjects and subjects in

congestive heart failure � this suggests that DFA is quantifying physiologicallymeaningful patterns in

heart rate variability� Given the origin of the interest in powerlaw correlations in heart rate� there is

an interesting possibility that the HR patterns quanti�ed by DFA arise from nonlinear dynamics� But

whatever the dynamical origin of the patterns� it is useful to know whether the patterns themselves

are indicative of nonlinearity�

In their study� Peng et al� took �
hour Holter records of RR intervals� and divided them into

nonoverlapping segments of ���� RR intervals� For each segment� the DFA analysis provides two

numbers� a powerlaw slope over a time scale of �� to �
 beats� and a powerlaw slope over a shorter

time scale of 
�� beats� Figure �a shows the DFA statistic calculated from many segments of �
hour

data graciously provided by Peng� Normal subjects are shown as circled numbers� and congestive

heart failure subjects are shown as uncircled numbers� The number itself identi�es the individual

subject� Figure �b shows the same analysis applied to surrogate data generated from each individual

segment� The overall pattern is remarkably the same for the test data as for the surrogate data� This

suggests that the HR patterns that are di�erent between normals and congestive heart failure subjects

are linear patterns� Of course� the possibility exists that the reason why there are linear di�erences

between normals and CHF subjects is based in some physiological nonlinear dynamics� but the data

themselves do not provide direct evidence for this�
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Figure 
� Testing for nonlinear dynamics in two RR	interval time series� In each case� a short time series
of RR intervals is shown� as well as one realization of surrogate data� Beside the time series is shown the
�return plot� of the data� that is� a scatter plot of RR�i �� versus RR�i�� Underneath the time series are
shown the values of the three test statistics for the test data ��� and � realizations of the surrogate data
����

�� Process Nonstationarities

In testing for nonlinearity� we used nonlinear statistics and assumed that the data were generated by

a stationary process� If we use linear statistics� we are unable to discriminate di�erences between test

data and surrogate data� all the surrogate data sets will have the same value for the linear statistics as

the test data� However� if we divide the surrogate and test data into segments� we will in general �nd

that linear statistics di�er from segment to segment� The surrogate data re�ects a process that is both

linear and stationary� and the segmentbysegment variability in the statistics re�ects the sampling

distribution of the statistics�

If the test data are consistent with the null hypothesis� that is if the test data come from stationary

linear dynamics� then the segmentbysegment values of the statistic for the test data should fall in

the sampling distribution given by the segmentbysegment statistics of the surrogate data� If there

are di�erences� then they can be ascribed either to nonlinearity in the data� or to nonstationarity� By

using linear statistics� we limit the sensitivity of the analysis to nonlinearity� So� if di�erences between
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(b) Segment-by-Segment Surrogates
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(c) 24-hour Surrogates
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Figure �� DFA Analysis of Holter data� The DFA analysis produces two numbers that characterize each
time series� There are plotted here for segments of length ���� beats out of a ��	hour Holter record� The
code number for each subject is plotted for each segment� circled numbers indicate normal subjects� while
uncircled numbers are congestive heart failure subjects� �a� Original data� �b� Surrogate data constructed
separately for each segment� �c� Surrogate data constructed from the entire ��	hour record� and then
divided into segments�

the test and surrogate data are found using linear statistics� we have evidence for nonstationarity of

the �linear� process that generated the data� �Alternatively if we wanted to use a nonlinear statistic to

test for nonstationarity� we could test for nonlinearity on the segmentbysegment level by calculating

surrogates for each segment individually� and using any nonlinear statistic we choose��

An informal example of a test for nonstationity is given in Figure �c� Here� the surrogates have

been generated for the whole �
hour Holter record �as opposed to the segmentbysegment surrogates

shown in Figure �b�� For each subject� there is a narrower distribution of the DFA statistics for the

segments of the �
hour surrogates than for the segments of the original data� Insofar as we have

already tested the DFA statistic for nonlinearity� and found it to be e�ectively a linear statistic on this

��



data� we have evidence that the �
hour data is nonstationary in terms of DFA� This is not altogether

surprising� since human activity levels etc� changes considerable over a �
hour period�
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Figure �� �left� Amplitude versus time of the respiratory	band component of the RR	interval time series
shown in the lower panel of Figure 
� The two dotted lines ihere ndicate the �
� con�dence intervals for
surrogate data� �right� Same but for the low frequency component� A pass band of ��
 to �� beats�cycle
was used for the respiratory band� and �
 to �� beats�cycle was used for the low frequency band� The
output of these FIR �lters �length �
 beats� was squared and low	pass �ltered with a boxcar of length �
�
beats�

Another example of testing for nonstationarity is provided by the RRinterval data shown in

Figure � �lower panel�� The �rst and last halves of the time series seem by eye to be qualitatively

di�erent� Suppose that we want to �nd out whether the sympathovagal activity� as measured by

RMS amplitudes in respiratory and low frequency bands� changes during the course of the recording�

We can easily measure the RMS amplitudes using a bandpass �lter� squaring the output� lowpass

�ltering� and taking the square root of the result� This is shown in Figure ��

In order to establish whether the di�erences during the course of the time series are statistically

signi�cant� we generate surrogate data� and apply the same processing to them� The dotted lines in

the �gure show the ��� con�dence intervals for the surrogate data �i�e�� the ��� and ���� percentiles��

Insofar as the test data spends more than �� of the time outside of the con�dence intervals� and given

that the statistic used is linear� we have evidence for nonstationarity in the signal� Clearly this is the

case for the respiratoryfrequencyband amplitude� but the lowfrequencyband signal shows no such

pattern�

The surrogate data technique allows us to explore di�erent parameters to use in detecting nonsta

tionarity� For instance� if we wanted to check whether there are short bursts of respiratory frequency

activity� we might want to use quite short bandpass and lowpass �lters� The surrogate data technique

would allow us to see how likely any detected bursts are to arise purely from chance�
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Figure �� Sampling distribution of the DFA statistic for segment sizes of �
 beats� � beats� and �
beats� based on surrogates generated from one subject�

Having identi�ed a nonstationarity in the data� we now need to deal with it� A standard technique

��



in heart rate variability is to divide the data into segments� But how large a segment to choose� The

classical tradeo� is between using short segment size in order to track the nonstationarity� and using

long segment size in order to minimize the extent of the sampling distribution of the statistic�

In the case of DFA� we might for example try to make the segment size as short as possible

consistent with being able to discriminate between normals and congestive heart failure subjects� In

order to do this� it is necessary to estimate the sampling distribution for each segment size� Surrogate

data allows us to do this in an easy way�

Start by generating surrogate data for the entire �
hour record� Then divide this surrogate

data into segments of the desired length� and calculate the DFA statistic on each segment� Multiple

realizations of surrogate data can be used to increase the number of segments� Results for one subject

in the DFA study are shown in Figure �� As expected� the distribution of the DFA statistic becomes

narrower as the segment length is increased� If our task is to distinguish normals from CHFs� then we

want the size of the DFA distribution to be smaller than the clouds for normals and CHF shown in

Figure �a� This appears to be satis�ed for a segment length of 
��� beats�

	� Summary

Surrogate data o�ers a straightforward method to detect nonlinearity and nonstationarity in data�

Detecting nonlinearity and nonstationarity is important even if one is not interested in chaos and

nonlinear dynamics� since it points out situations where linear analysis �such as power spectrum

analysis� may not be picking out all of the information in the time series�

Surrogate data allows the sampling distribution of even complicated statistics to be readily esti

mated so that it is no longer necessary to use rules of thumbe to pick parameters such as the length

of data segment to be used� and so that formal tests of statistical signi�cance can be used�

Given the computational ease of generating surrogate data� and the everpresent con�ict in heart

rate and blood pressure between the nonlinear!nonstationary physiological mechanisms and the lin

ear!stationary analysis methods in use� surrogate data is a valuable method that should be added to

the toolkit of those analyzing variability in heart rate and blood pressure�
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