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A new method for studying time series is described based on a statistic indicating the degree to which trajectories 
passing through a small region of an embedding space are parallel. The method is particularly suited to time series with a 
significant correlation time. Analytic results are presented for Brownian motion and Gaussian random processes. These are 
generally different from the results for chaotic systems, allowing a test for deterministic dynamics in a time series. A 
variety of examples are presented of the application of the method to low- and high-dimensional systems. 

1. Introduction 

Inferr ing the dynamical mechanism of a sys- 
t em f rom a measured time series is a general 
p rob lem in science. For  complicated, aperiodic 
data,  a decision needs to be made:  is irregularity 
in the data to be ascribed to noise or to de- 
terministic chaotic dynamics? Fig. i shows a 
sampler  of  t ime series, some of which arise from 
stochastic processes, some f rom deterministic 
chaotic equations,  and some from experimental  
or  natural  systems. It  is not always easy, by eye, 
to distinguish the deterministic t ime series f rom 

their stochastic counterparts .  
There  exists an extensive literature describing 

techniques for relating physical systems to linear 
filters and for interpreting t ime series as linearly 
filtered random noise. Even for systems known 
to be  nonlinear,  this linear "systems analysis" 
approach often provides technologically satisfac- 
tory results; it is the basis for most of  engineer- 
ing control theory. 

I t  is only  in the past 15 years or so that there 
has been  a general awareness of the possibility 
that  irregular-looking fluctuations may be caused 
by deterministic chaotic dynamics [1]. A number  
of tools have been developed for estimating f rom 
time series characteristics of  chaotic systems such 
as dimension [2,3] or the Lyapunov numbers  that 
measure  the exponential  divergence of nearby 
chaotic trajectories [4-6]. Initially, it was hoped 
that  these characteristics could be used to dis- 
tinguish between deterministic chaotic systems 
and stochastic systems such as those dealt with in 
linear systems analysis. More  recently, emphasis 
has shifted to testing to see if a t ime series is 
genera ted by a deterministic process and the 
construction of deterministic nonlinear models 
f rom time series [7-9]. One test for determinism 
versus randomness  consists of evaluating 
whether  a deterministic nonlinear model or a 
l inear model  allows bet ter  predictions to be 
made  of future values of the t ime series given 
past  values. Another  test is whe ther  the er ror  in 
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Fig. 1. Segments of various time series that are studied in section 9. The time series in the left column are from experimental, 
natural, or mathematically deterministic systems; the time series on the right are synthesized stochastic time series. (a) Bromide 
ion potential from the Belousov-Zhabotinskii reaction, (b) a time series constructed by connecting randomly chosen peaks in (a) 
with line segments of constant slope. Data provided by H. Swinney. (c) The x component of the Rossler system and (d) a 
Gaussian random process with the same autocovariance function. (e) Numbers of measles cases reported each month in New 
York City, and (f) a yearly peak with random amplitude. The whole time series is shown. Data provided by G. Sugihara through 
the Santa Fe Institute. (g) The Wolper sunspot numbers and (h) a Gaussian random process with the same autocovariance 
function. The whole time series is shown. (i) A time series from a delay-differential equation model of blood cell pro- 
duction (eq. (36)) and (j) a Gaussian random process with the same autocovariance function. (k) Intervals between heart beats 
over a 1/2 hour period and (1) a Gaussian random processes with the same autocovariance function. The whole time series is 
shown. (m) Experimental recording from a system of 8 coupled nonlinear oscillators and (n) a Gaussian random process with the 
same autocovariance function. Data provided by P. Linsay. 

t he  p r e d i c t i o n s  inc reases  wi th  increas ing  p red ic -  

t ion  t ime  in the  m a n n e r  e x p e c t e d  for  chao t ic  

sys tems  [9]. 

A n  a l t e rna t i ve  a p p r o a c h  involves  inves t iga t ing  

w h e t h e r  the  t r a j e c t o r y  cons t ruc t ed  by  e m b e d d i n g  

a t i m e  ser ies  is cons i s t en t  wi th  a dynamica l  rule  

tha t  is a s ing le -va lued  func t ion  o f  pos i t ion  in 

p h a s e  space .  In  sec t ion  2 we  p r e s e n t  in de ta i l  a 

n e w  m e t h o d  for  assess ing the  poss ib le  de te r -  

min i s t i c  or ig ins  of  a t ime  ser ies  m e a s u r e d  f rom a 

c o n t i n u o u s - t i m e  d y n a m i c a l  sys tem.  T h e  m e t h o d ,  

i n t r o d u c e d  in ref.  [10], involves  e m b e d d i n g  a 

t i m e  ser ies  in a phase  space  and  examin ing  t h e  

e x t e n t  to  which  the  t a n g e n t s  to  the  t r a j e c t o r y  in 

a f ini te  s ized  r eg ion  o f  the  phase  space  po in t  in 

s imi la r  d i rec t ions .  T h e  local  s tat is t ic  used  to 

quan t i fy  this  a l i g n m e n t  is d e n o t e d  by  the  symbol  

Ivjl, w h e r e  the  index  j re fers  to the  reg ion  o f  the  

p h a s e  space .  In  sec t ion  3 we discuss the  appl ica-  

t ion  o f  t he  m e t h o d  to de te rmin i s t i c  sys tems and 

s o m e  o f  the  r easons  why ,  even  for  a de te rmin i s -  

t ic  sys t em,  the  t angen t s  to the  t r a j e c t o r y  at  near -  

by  po in t s  in the  phase  space  m a y  no t  po in t  in 

iden t i ca l  d i rec t ions .  

In  sec t ion  4 we de r ive  the  e x p e c t e d  va lues  of  

Ivjl for  B r o w n i a n  m o t i o n ,  i . e . ,  a r a n d o m  walk  in 

m - d i m e n s i o n a l  space .  A r a n d o m  walk  is no t  a 

ve ry  g o o d  m o d e l  for  m a n y  t ime  ser ies ;  a m o r e  

g e n e r a l l y  app l i cab l e  m o d e l  is a G a u s s i a n  r a n d o m  

p roces s  ( G R P ) ,  which  resul ts  f r om pass ing  whi te  

no i se  t h r o u g h  a l inear  filter.  In  sec t ion  5 we show 

tha t  the  e x p e c t e d  va lue  for  Iv, I for  a G R P  de-  
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pends only on the autocovariance function of the 
time series, and we derive an approximate ex- 
pression for IV/I as a function of position in phase 
space. One result from this analysis is that for 
appropriately chosen embedding lags z, a Gaus- 
sian random process often appears the same as 
Brownian motion in terms of IV/[. 

The statistic 1Vii describes the alignment of the 
trajectory tangent vectors in region j of phase 
space. In section 6 we describe two ways of 
averaging IVjl over all of phase space, and a 
method to derive confidence intervals on the 
resulting statistics. One of these statistics, A, 
takes on the value I for a perfectly deterministic 
system and 0 for Brownian motion or an appro- 
priately embedded GRP. 

A useful test for the possibility of deterministic 
chaotic dynamics is to compare A for the time 
series under analysis with A from a GRP time 
series with a similar autocovariance function. A 
m o r e  general type of model than a GRP is a 
GRP passed through a static nonlinear trans- 
formation (e.g., squaring each term in the time 
series). Section 7 discusses the influence of static 
nonlinear transformations on A. In section 8, we 
discuss briefly the ability of A to discern de- 
terministic nonlinear dynamics in the presence of 
noise. 

Finally, in section 9, we present as examples of 
the application of the method an analysis of the 
time series shown in fig. 1. 

2. The method: coarse-grained flow averages 

Consider a time series x( t )  generated from a 
deterministic dynamical system 

dz f ( z )  x ( t )  g(z( t ) )  (1) 
dt  

where the dynamical function f ( -  ): ~ p---> ~ p 
and the measurement function g(- ): ~ p ~ ~ are 
smooth and single-valued. As is well known, x( t )  
in ~ can be put in the form of a trajectory x( t )  in 

m by the simple device of time-lag embedding 

xX(t) = (x( t ) ,  x( t  -- ~), . . . , x( t  -- (m - 1)~')) , 
(2) 

where x x is the transpose of the vector x. It has 
been shown [11] that for m > 2 p  + 1 there is a 
smooth function ~m_.> ~ p  that transforms the 
trajectory x( t )  into z(t)  so that nearby points in 

m are also nearby in ~ P. (A method for asses- 
sing whether this is the case when embedding a 
time series has been proposed by Kennel et al. 
[12].) For the present method, we are concerned 
with the evidence that x( t )  can provide about the 
single valuedness of f ( .  ), and hence the de- 
terminism of the system d z / d t  =f(z) .  

The derivative d z / d t  is a vector tangent to the 
trajectory z(t) .  Insofar as f ( .  ) is a smooth func- 
tion of z, we expect that two tangent vectors 
d z l / d t = f ( z l )  and d z 2 / d t = f ( z 2 )  will point in 
similar directions when zl is close to z2. Since the 
map from z to x is smooth, the tangent vectors 
d x J d t  and dx2 /d t  should also point in similar 
directions. 

Now, assume that a time series x( t )  is mea- 
sured from a stochastic system. For the stochas- 
tic system, the tangent to the trajectory d x / d t  is 
not a single valued function of position x. For a 
particle undergoing random Brownian motion, 
for instance, the vector z(t)  refers to the position 
in space, while d z / d t  is a random variable with a 
uniform distribution of directions. 

The method we present here is based on col- 
lecting the tangent vectors d x ( t ) / d t  in a small 
region ~ m, and assessing the degree to which the 
vectors point in similar directions or point ran- 
domly. 

The first step in the method is to embed the 
time series x( t )  in ~ "  using eq. (2). Next, the 
space ~ m is divided into "boxes",  non-overlap- 
ping m-dimensional hypercubes with edge length 
¢. For finite E, a finite number of boxes covers 
the entire trajectory, and the set of covering 
boxes can be indexed with an integer j. 

The trajectory passes through box j one or 
more times. Index the individual passes through 
box j with index k, where a pass consists of the 
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(a) 

x(t) v ~ v  V 

""T"T'T"F"T"T"T"T"T"T'","'T'"T'"~'"~ 

Fig. 2. An illustration of the method in a 2-dimensional embedding. (a) The steps in the calculation of ~ for one box j of the 
coarse grained phase space. There are three passes of the trajectory through this box. The corresponding unit length trajectory 
vectors Vk.j k = 1, 2, 3 are averaged to produce the resultant vector V r (b) An embedding of the Rossler x-component (see section 
9.1.1) and the ~ for all boxes of the coarse grained phase space. 

segment of the trajectory from the point in ~m 
where the trajectory enters the box j to the point 
where it next leaves the box j. Construct a vector 
of unit length, Vk, j whose direction is given by 
the displacement between the point where pass k 
enters box j to the point where the trajectory 
next exits from the box. The trajectory vector Vk, j 
points in the direction of a secant to the trajec- 
tory,  i.e.,  the direction of a finite difference 
approximation to the tangent vector dx /d t .  

The set of trajectory vectors in box j can be 
summarized by their mean, the resultant vector 

Vj - ~ Vk, j /n j ,  (3) 
k 

where nj is the number  of trajectory vectors in 
box j. The  transformation from the embedded 
time series to Vj is shown in fig. 2. 

The calculation of the finite-difference tangent 
to the trajectory within a box implicitly assumes 
that the embedded time series contains time- 
consecutive points that fall into the same  box. 
For  continuous-time systems, this can be accom- 
plished by sampling the time series at a high 

rate. The,  method is not applicable to discrete- 
time maps such as the logistic or Henon  maps 
where consecutive points may be widely sepa- 
rated in the phase space. In cases where the time 
series from a continuous-time system contains 
small amounts of high frequency noise, it may be 
appropriate to disregard in eq. (3) those re- 
sultant vectors whose box passage time b is 
below a threshold value, or to low-pass filter the 
time series. (See sections 8 and 9.1.4.) 

3. Deterministic systems 

As argued above, for a deterministic system 
the trajectory vectors in a small enough region of 
the phase space point in the same direction. This 
can occur only when the embedding dimension 
m of the time series is large enough to resolve 
the system dynamics; a necessary condition is 
that m -- p ,  a sufficient condition is m -> 2p + 1. 
When m is too small to represent the dynamics 
(e.g., m < p ) ,  different parts of the trajectory 
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z(t) in ~ "  are mapped by the embedding to the 
same region of ~ m  the trajectory vectors will 
not be aligned. 

When m is large enough, in the limit of vanish- 
ingly small box size the trajectory vectors are 
exactly aligned and 

o Iv l = 1. (4) 

In practice, this limit cannot be realized for 
several reasons. 

When a box has finite size, the flow field in the 
phase space may vary over the domain of the 
box. For example, trajectories going through two 
nearby points in phase space may be oriented 
slightly towards or away from one another, cor- 
responding to the action of positive or negative 
Lyapunov exponents. The large scale curvature 
of attractors is not always of consequence in this 
regard, since the trajectory may follow a similar 
path on each pass through the box - for instance, 
for periodic systems the identical path is fol- 
lowed on every pass despite curvature of the 
trajectory. 

When time series are short, boxes may need to 
be quite large in order to contain more than one 
pass of the trajectory through several boxes, 
particularly when the dimension of the system is 
high. (See section 9.2.) Big boxes may also be 
needed to help reduce the effects of measure- 
ment noise. In both cases, the spatial variation of 
the vector field in the box causes [Vii < 1. 

The method of eq. (2) of reconstructing dy- 
namics using delays introduces another cause for 
[Vj[ < 1. Chaotic systems have at least one posi- 
tive Lyapunov exponent. This causes points that 
are initially close in the original phase space ~ p 
to be pulled apart in time. Over the time (m - 
1)-r involved in the delay embedding, different 
components of the embedded vector x(t) can 
become causally disconnected with one another. 
The resulting decrease in Iv l with increasing r 
can be seen in the examples of sections 9.1.1, 
9.1.2, 9.2.1. The precise form of the fall-off in 
those examples is not completely understood. 

4. Brownian m o t i o n -  random flights in m 
dimensions 

An important limiting case is Brownian mo- 
tion, corresponding to a random walk in phase 
space. In this case, the Vkj are random variables 
whose direction is uniformly distributed in ~ ' .  
In this section we analyze the expected value of 
the resultant vector assuming that the orienta- 
tions in each pass through any given box are 
random. 

The history of this problem goes back to 
Rayleigh and Chandrasekhar who studied ran- 
dom flights in m dimensions [13,14]. The general 
problem can be formulated as follows. Consider 
a flight consisting of n steps of unit length in m 
dimensions where the angle from each step to 
the next is chosen randomly. The average dis- 
placement per step is R~. 

The surface of the d-dimensional hypersphere 
of radius a is defined to be the locus of points 
satisfying Elm1 x~ = a 2. The extent of the surface 
of the 1-sphere is 2 and of the 2-sphere is 2"ira. 
From fig. 3 we see that the extent of the surface 
of the m-sphere of radius a, denoted ISm(a)l, can 
be determined recursively from the integral 

ISm(a)l 

= ;dO alsm-l(a sinO)[, m > 2 ,  (5) 

I 

0 

to obtain 

2,ffm / 2 a m-1 

[Sm(a)l= V ( m / 2 )  ' (6) 

which is valid for all m. 
Now consider the summation of two vectors of 

unit length in m dimensions. Let the angle be- 
tween the two vectors be 0 and consider the 
average length integrated over surface of the 
(m - 1)-sphere. Since the distance between two 
vectors of unit length is given by ( 2 -  2 cos0) 1/2 
(see fig. 3) we find that the mean length of two 
vectors in m dimensions,/~2 is 
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a [2 
1/2 

~. m-I 
S (a s in(0)  

Fig.  3. S c h e m a t i c  d i a g r a m  showing  the  g e o m e t r y  unde r ly ing  
eq.  (5).  

"rr 

/~2= 1 f 2ls~-(1)l dO 
0 

× (2 - 2 c o s  0 )  1/2 ]sm-X(sin 0)1. 

Carrying out the integral leads to the result 

(7) 

R2 = 2m-ZF(m/2)F(m/2) (8) 
'IT 1/2F(m - -  1/2) 

The average length of 2 unit vectors for several 
values of m is given in table 1. Using Stirling's 
approximation, we find limm_.~ k 2 = 1/V~, a 
result found previously by Hammersley and Lord 
using other techniques [15,16]. 

We now consider the computation of/~ m when 
n is large. Rayleigh [13] and Chandrasekhar [14] 
computed the density of the mean displacement 
for m = 2, 3 and Feller [17], analyzed the prob- 

lem for any m. The probability density, W m, that 
/ ~  lies between R and R + dR is 

1 ISm(R)I exp(-R2/2s) 
Wn" = n (2,rrs) "/2 (9) 

where s = n/m. From this we compute the mean 
displacement per step 

A m = C m / V n  , ( 1 0 )  

where 

( 2 ) 1/2 F[(m + 1)/2] 
Cm = \-m/ F(m/2) (11) 

Several values of c m are given in table 1. 
Although, the derivation of eq. 10 is only valid 
for the asymptotic limit when n is large, it agrees 
within a few percent of the analytical values 
computed in eq. 8 for n = 2, and with computer 
simulations (not shown) for n-> 2. 

5. Gaussian random processes 

As a starting point in studying stochastic sys- 
tems other than Brownian motion, we consider 
Gaussian random processes (GRP) [18,19]. 
GRPs form the basis for much of the technology 
surrounding system estimation and control [20]. 
The comparison of a time series to a similar 
GRP has been proposed as a bootstrapping test 
for the significance of dimension and Lyapunov 

T a b l e  1 

Vec to r  s ta t i s t ics  for  r a n d o m  flights.  

m 

2 3 4 5 

21r 41r 2~r 2 ] Ir 2 - • - 

2 2 32 24 1 
--  ~ 0 . 6 3 7  - ~ 0.667 ~ 0 . 6 7 9  - -  ~ 0 . 6 8 6  - -  Ir 3 15~r 35 V ~  ~ 0.707 

0.627 ~ ~ 0.651 ---if--- ~ 0.665 ~ 0.673 ~ ~ 0.707 

4 3x/"~ 8 
= 0.886 V6~r~-~ = 0.921 V32~ = 0.940 ~ ~/~-~- = 0.952 1 -5- 

[Sa(1)] 

/~ za(eq. 8, exac t )  

/?g (eq.  10, approx . )  

c,, (eq. 11) 
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exponent estimates [21]. Some examples of 
GRPs are given in figs. ld,h,j,1 and n. After a 
brief introduction to GRPs, we derive the prop- 
erties of coarse-grained embeddings of GRPs in 
sections 5.1 and 5.2, and discuss ways of calculat- 
ing Ivjl in section 5.3. 

A GRP can be represented by a randomly 
forced linear dynamical system such as 

dz 
dt A . z + B . w ,  

X : C ° Z  
(12) 

where A and B are matrices of constants, c is a 
constant vector, and w is a vector of indepen- 
dently and identically distributed Gaussian white 
noise (GWN) processes. When the real parts of 
the eigenvalues of A are negative, the homoge- 
neous system is stable and the stochastic system 
is stationary [18,22]. Such systems are often 
studied in terms of their autocovariance func- 
tions. 

When x ( t )  is a stationary GRP the probability 
density function (pdf) for x at time t is written as 
a Gaussian pdf, 

1 exp[_xZ/2qt(O) ] (13) p , ( x )  = ~ 

where I / ' (0)= ( x ( t ) x ( t ) ) .  (Here and in the fol- 
lowing it is assumed that the mean of a measured 
signal, in this case ( x ( t ) ) ,  is zero.) 

For a GRP, the multivariate pdf for any vector 
that is a linear function of x ( t )  can be written as 
a multivariate Gaussian pdf [18,23]• In particu- 
lar, the pdf for the embedded vector 

T 
x = ( x ( t ) ,  x ( t  - z ) , . . . ,  x ( t  - ( m  - 1)z)) (14) 

is 

Pt , t -T  . . . . .  t - - (m-1 )T(x )  

1 
- -  ( 2 , f f ) m / 2 [ X [ 1 / 2  exp( -  lxa' .  X -1. x ) ,  (15) 

where X is the covariance matrix which is the 

outer product (xx a') having terms 

Xi. j = ( x ( t -  i f ) x ( t - j r ) )  = q t ( ( i -  j ) z ) .  (16) 

When the off-diagonal terms of X are zero, the 
components of x are uncorrelated with one 
another. For a GRP, this means that there is no 
statistical dependehce between the components 
of x. For a system that is not a GRP, e.g., a 
nonlinear chaotic system, it is possible to have 
statistical dependence between the components 
of x even if the off-diagonal terms of X are zero. 
Thus, eq. (15) cannot be used to describe prob- 
ability densities for chaotic systems• 

5.1.  F l o w s  o f  Gauss ian  r a n d o m  processes  

The matrix X describes the probability density 
of the cloud of points that results from the 
embedding. We are interested here in the struc- 
ture of the trajectory vectors in the embedding 
space: whether they point in random directions 
independently of position in the embedding 
space, or whether they tend to point in similar 
directions as a function of position. Consider the 
finite difference approximation to the tangent to 
the embedded trajectory 

Ax(t) a" --- (Ax(t), A x (  t - "r ) , A x (  t - 2~'), 

. . . .  A x ( t  - ( m  - 1)~-) 

= ( x ( t  + b)  - x ( t ) ,  x ( t  - z + b)  - x ( t  - r ) ,  

. . . .  x ( t  - ( m  - 1)z + b) 

- x ( t  - ( m  - 1)r)), (17) 

where b represents the t ime  it takes the trajec- 
tory to pass through a typical box of edge length 
e. Although A x ( t )  is not normalized to unit 
length as are the trajectory vectors, it does point 
in the same direction as some trajectory vector 
for some choice of box gridding. 

Let  box ] be centered on position x. The 
resultant vector Vj is, roughly, the average of Ax 
over a small region surrounding x. To examine 
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the coarse-grained spatial average Vj, we need to 
consider the pdf of the 2m-dimensional vector 

zero,  we need to examine the conditional prob- 
ability 

T = (x ~, Ax ~ ) .  (18) p(Axlx) = p(x ,  Ax) /p (x ) .  (23) 

Since ~ is a linear transformation of x, the pdf for 
is in the form of eq. (15) with covariance 

matrix M = ( ~ v ) .  This can be written 

M=(NX N ) ,  (19) 

where X, N, and W are m × m matrices and X is 
given in eq. (16). The elements of these matrices 
are: 

Ni, k = (Ax(t  - it)  x( t  - k r ) )  

= ~ ( ( i -  k ) r -  b ) -  ~ ( ( i -  k ) r ) ,  (20) 

which describes the correlations between the ith 
component  of the trajectory vector and the kth 
component  of position; 

Wi, k = (Ax(t  - ir) Ax(t  - k r ) )  

= - q t ( ( i  - k ) r  + b) + 2~(( i  - k)r )  

- ~ ( ( i -  k ) r -  b ) ,  (21) 

which describes the correlations ith and kth com- 
ponents of the trajectory vector; and the Xi, k = 
~ ( ( i  - k ) r )  which describes correlations between 
the ith and kth components  of the position. 

When the off-diagonal terms involving Ax are 
zero,  there are no correlations between the com- 
ponents of the trajectory vector and the position 
in phase space. Since the pdf of the trajectory of 

a G R P  is fully described by the covariance ma- 
trix M, the trajectory vectors are equally likely 
to point in any direction and are independent  
of position, i.e., p ( A x l x ) = p ( A x ) p ( x ) / p ( x ) =  
p(Ax) .  This case corresponds to a random walk, 
leading to 

I~1 =/~m (22) 
n j  " 

When the off-diagonal elements of M are non- 

Calculating p(x)  = f~_=p(x, Ax) dAx and writing 

-1 M-I=(NX ~/ )  =2(BAX ~ ) ,  (24) 

we find 

p ( a x l x ) - - -  12Cl e x p [ - ( A x  d- H T .  x )"  C 
(2,rr) m/2 

• (Ax + H-x)], (25) 

where H = C -1.  B x. The conditional pdf p(Axlx)  
is itself a Gaussian probability density with 
covariance matrix C-1/2 and a mean that de- 
pends on position x in phase space 

(Ax)  = - H ' x  = - C  - I " B  x ' x .  (26) 

Each trajectory vector Ax consists of a random 
component  governed by the covariance matrix 
C -  1/2 and a "determinist ic" component  - H- x 
which is a function of position x in phase space. 

5.2. A universal form o f  V i for Gaussian 
random processes 

We can approximate the expectation value of 
[Vj[ as it depends on B by assuming that the 
off-diagonal elements of C are negligible. When 
C is diagonal, the directions of the random com- 
ponents are uniformly distributed: we write the 
mean squared length of the random component  
as 

2 t r ace (C- I /2 )  (27) 

In a given small region of phase space, write the 
kth velocity vector as Ax k = d + w k, i.e., the sum 
of the deterministic part d = - H -  x that depends 
on position in phase space and a random part wg 
whose probability density is independent of posi- 
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tion in phase space. The sum of n~. of these 
• n i nj . 

vectors is nfl + Ek= t w r Since Ek= ~ w/ points 
randomly with respect to d, we can make the 
approximation that the square modulus of the 
sum of vectors is IE~CIAxl 2= Injdl 2 + Ir~'-_,w,I ~ 
The expectation value of this is 

2 2 , ' ~  m x2 (28) 

where we use the fact that the expectation value 
of the length of the sum of n/randomly oriented 
unit length vectors in an m-dimensional space is 

--m nRn. For each of the vectors IAx~l 2 Id12+ 
I wkl ~, with expectation value Idl~÷ I vl ~. Recall- 
ing the definition of Vj in terms of the velocity 
vectors 

constant x .  HTH • x. (The quadratic equation x .  
H T- H" x = a -> 0 describes an ellipsoid, because 
the matrix H T. H has nonnegative eigenvalues.) 

(iii) As x increases from the origin, Ivjl also 
increases, saturating at Ivjl = 1 for very large x. 
However, for large x, p ( x ) ~  O, so the probabili- 
ty of actually finding IVj[ ~ 1 may be small in a 
finite time series depending on the respective 
sizes of d and v. 

(iv) Iv, I k7 at the origin, x = O. When H = 0 
(corresponding to the case of off-diagonal ele- 
ments of IWI being zero), we recover the result 
IVj[ = /~  m 

n]" 

5.3. Computation of Vj for Gaussian random 
processes 

°J (ax+  
v, = ~ ,  ,,, iAxk I / 

nj 

1 ~ AXk, (29) 

gives 

2 - m  2 
(Idl 2 + v CRy) ) 

Ivjl 2 ~ (idl 2 + v ~) 
(30) 

Writing this in terms of the elements of the 
covariance matrix m we have +for the case of a 
GRP 

Ivjl ~ (x .  H T. H . x  + V2(km)2~ '/2 
x :  i~l-y: ~ .--x+ ~-- ~ ] (31) 

The expectation value of the direction of V/is 
d =  - H . x .  

Eq. (31) represents the key result for the 
analysis of a GRP. The elements of H and v are 
derived from the autocovariance function gt(T). 
The following features of coarse-grained flow 
averages are thus universal for GRPs: 

(i) The expectation value (Vj) depends only 
on gt(T),  the embedding parameters ~- and m, 
and the gfidding size ~. 

(ii) Ivjl is constant on ellipsoidal surfaces of 

To generate Vj for a GRP at least three differ- 
ent procedures could be used. 

(i) Given ~ ( T )  and a desired embedding lag ~- 
and coarse graining b, calculate H and v, and use 
eq. (31) to generate Vj, (An appropriate n i for 
any x can be calculated from the probability 
density of eqs. (15) and (16).) 

(ii) Calculate M and generate vectors ~ using a 
Monte Carlo method. V i is then calculated direct- 
ly from these randomly generated vectors. This 
avoids the approximations that lead to eq. 31, 
however, it still involves the approximation that 
b is the same for all boxes• (See fig. 4b.) 

(iii) Generate a GRP with the given ~ ( T ) .  In 
a typical case, one has a time series x(t) and 
wants to generate an instance of a GRP with the 
same ~ ( T )  as x(t). An operationally effective 
way of doing this [24,21] is to take the Fourier 
transform of x(t), randomize the phases in 
[0, 2"rr), and then take the inverse Fourier trans- 
form. This procedure leaves the power spectrum 
unaltered, hence preserving ~ ( T )  which is the 
inverse Fourier transform of the power spec- 
trum. (See fig. 4c.) 

Eqs. (16)-(31) show that for a GRP, given ~" 
and b, the expectation value of Vj depends only 
on ~ ( T ) .  In this sense, the properties of an 
embedded GRP of a given gifT) are universal-  
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Fig. 4. Vj at ~- = 50, 100, 150 for (a) the time series of fig. lm;  (b) ~ for a GRP derived from the covariance matrix M using a 
Monte Carlo method; and (c) Vj calculated directly from a phase-randomized time series. See fig. 15 for ~(~'). A box size of 
• = 1/16 (scaled to the range of the time series in lm) has been used. Note the ellipsoidal symmetry in (b) and (c) corresponding 
to the linear nature of a GRP, while this symmetry is violated in (a). (The arrow length in the figure has been scaled so that when 
Ivjl = 1, the arrow has length e.) 

the particular set of random Fourier phases used 
to construct the GRP are not important. Clearly, 
however, there are some sets of phases for which 
the Vj are substantially different than those indi- 
cated by eq. (31). For example, the phases im- 
plicit in the construction of the deterministic 
time series x(t) in fig. 4 do not, for the given 
~ ( T ) ,  produce a GRP. However, these same 
phases, when applied to another ~ ( T )  do pro- 
duce a GRP time series - the "randomness" of a 
set of phases depends on the context ~ ( T )  in 
which it is applied. Our experience is that the 
phases produced by a standard random number 
generator [25] are in practice random in all 
contexts. 

6. Test statistics on I Vjl 

A picture of the spatial distribution of Vj of the 
form of figs. 2 or 4 is useful for visualizing the 
flow field in a 2-dimensional embedding, but 
does not allow the ready comparison of Vj for 
different time series, particularly in higher em- 
bedding dimensions. To allow such comparisons 
to be made, a statistical test is needed. 

In many statistical tests, it is appropriate to 
specify a null hypothesis that may or may not be 
rejected on the basis of the available data. Two 
possible null hypotheses are suggested by the 
analysis of sections 4 and 5: the dynamics repre- 
sented by the time series correspond to Brown- 
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ian motion;  or the dynamics correspond to a 
Gaussian random process. The Ivjl in both these 

- m  cases are related to R n , so in constructing an 
average of Ivjl it is reasonable to do so by 
reference to R ,  m. 

We can test whether  the dynamics of the em- 
bedded  t ime series are distinct f rom Brownian 

mot ion by constructing the mean value of Iv, I for 
all the boxes that have n elements 

£m (Ivjl>j such thatnj=n" (32) 

The  uncertainty in this estimate of L m can itself 

be  est imated by the standard error of the mean 

[ ~ ' j  s . t . . , = . ( I v j l -  £m)2] 1'2 
° '7 =- E.j =, 1 (33) 

o'~ provides the means to decide whether a given 
--m /5,~ is significantly different from R , .  For exam- 

ple, when the Ivjl are approximately normally 
distributed, the Student 's  t test [26] may be used 

- m  - m  to set confidence intervals on L , .  Note that L ,  
has no intrinsic dependence on the time series 
length. However ,  tr m depends in a complicated 
way on the t ime series length, since it depends 
on the number  of  boxes with n passes which may 
go up or down as the length of the time series 
increases. 

In general,  not all of the boxes covering the 
t rajectory of a t ime series will have the same 
number  of  passes. Thus, it is appropriate  to 
calculate £ ~  for n = 2, 3 . . . .  and display all the 
/ ~  and the corresponding tr~ on a single graph. 
Fig. 5 shows £ ~ plotted as a function of n for the 
Rossler system and a random system with the 

same ~ ( T )  for various values of m. The null 
hypothesis values o f / ~ '  are plotted as continu- 
ous curves connecting the values they take on at 
the discrete n. It  is evident that the £ ~  for the 
Rossler  system are significantly displaced f rom 
- m  - m  - m  R n , while for the random system L ,  and R ,  are 

statistically indistinguishable. In addition, for the 
Rossler  system £3  are closer to 1 than £ 2 _  the 

Rossler  system cannot adequately be embedded  
in ~z ,  although it can in ~3. For the random 
system, £ 2 = L 3. 

In some cases it is convenient to combine the 
£ m for a given embedding of a given time series 
into a single number .  We consider the weighted 
average of -m L n , i.e. 

- m  2 - m  2 S '  ( L , )  - (R, j )  

fi, = Zinj ,.7, nj 1 -m 2 (34) 
• - ( g . j )  

For  Brownian motion,  fi'm = 0, while for ideal 
deterministic systems Am = 1. 

The  number  of passes n i through box j de- 

1.0- • 

0.0 
o ;0 i0 3b 

n (number of passes) 

Fig. 5. /_~ versus n for the Rossler system (filled symbols) and a GRP (open symbols) with the same ~/'(T). ~-= 585, m = 3, 
a = 1/32, time series length 655 time units. Error bars show -+2~. The curves show the theoretical values o f / ~  = cm/V"~ for 
Brownian motion. 
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pends on the length of the time series under 
analysis. Since k '~ obviously depends on n j, a nj 

summary statistic involving/~ '~ might itself be a nj 

function of n j  and hence of the time series 
length; this is an undesirable feature of a test 
statistic. A has been constructed so that for the 
cases of ideal deterministic systems, Brownian 
motion, and GRPs it is independent of nj. In 
these three cases, (IVA) is respectively 1, ~'~, 
and as specified by eq. (30). Substitution of these 
terms into eq. (34) shows that for these three 

_ R m (See table 2.) cases, A does not depend on nj. 
Confidence intervals for A can be derived by 

propagating tr m (eq. (33)) through eq. (34) 

1 ( / ~  nfl20.n,~£,~/(1 _ (/~,~)2)]2) I/2 
t r  m - E j n i  • 

(35) 

Table 2 
Expectat ion values of  [~l and A for different types of  dy- 
namical  systems.  The  vector d = - H .  x depends  on the posi- 
tion x of the box j,  while v 2 = t race(C-I /2 )  is constant  for all 
j. 

<lvjl>n,=n 

Ideal de terminism 1 1 
Brownian mot ion  k ~  0 

[Idl  ~ + v ~ C R o )  . . . .  ] 2 , idl  ~ \ 1 / 2  

Idl'+ G R P  

For longer time series, Ej nj is larger, tending to 
reduce the size of the confidence intervals. 

Such confidence intervals suggest the range of 
:~ that might be encountered if a different set of 
multiply occupied boxes was selected randomly 
for constructing the average implicit in eq. (34). 
As such, confidence intervals of this type are 

(a) 10 

1.o- 

0 . 5 "  

X ¸ 

0.0 

• Determ. 
o GRP 

I 

20 5'0 100 200 

Time Series Length 

0.4 ̧  

0.2 ̧  

0.O 

1000 

1250 25oo 50bo t0~00 

Time Series Length 

Fig. 6. fi, versus the length of the time series for the x -component  of  the Lorenz equat ions (x = 1 0 ( y -  x); y = 2 8 x - y -  x; 
= xy - 8z /3)  and for a GRP. The  analysis was repeated for several non-overiapping segments .  The  error bar plotted above the 

symbol  is twice the  populat ion s tandard deviation of A for the different segments.  The  error bar plotted below the symbols  is 2o, 
(eq. (35)) calculated within each segment  (averaged over the different segments) ,  m = 3, ~" = 0.75. The  inset shows a segment  of  
the  determinist ic  t ime series of  length 10 time units. (b) The  same as (a), but  for the  system of eq. (36) in section 9.2.1 with the  
parameters  given in the text. m = 10, z = 75. The  inset shows a segment  of  the deterministic t ime series of  length 1000 t ime units.  
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generally interpreted as indicating the range of 
values that will be encountered if, from a given 
dynamical process, a time series is collected from 
a random initial time. However, for determinis- 
tic systems the multiply filled boxes cannot be 
said to be selected randomly. The relevance of 
the confidence intervals given by eq. (35) can 
only be established empirically. Fig. 6 compares 
the confidence intervals calculated from eq. (35) 
and from a population of non-overlapping time 
series from a low- and high-dimensional dy- 
namical system and corresponding GRPs. The 
two forms of confidence intervals are similar, 
although for the high-dimensional system and its 
GRP, the population-based confidence interval is 
approximately twice as large as the confidence 
interval from eq. (35). This suggests that the 
confidence intervals from eq. (35) should be 
used only as a guide in interpreting results, 
rather than as a precise delimiter of when non- 
linear determinism has been detected. 

The test for whether a time series is inconsis- 
tent with a GRP generally involves calculating 
or £m for an appropriate GRP (see section 5.3) 
and making a comparison to .4 or £m for the 
time series itself using the confidence interval tr 
(eqs. (35) or (33)) as a guide to the statistical 
significance of any difference found. We note 
that often, when the embedding lag ~- is selected 
appropriately, an embedded GRP resembles 

--rrl  Brownian motion, and so /l ~ 0 and £m = R n " 
This is illustrated in figs. 5, 9, 10 and 15. (If the 
time series has a histogram that has much longer 
tails than a Gaussian distribution, the box size E 
must be chosen with care. See sections 7 and 
9.1.3.) 

7. Non-Gaussian processes 

In many cases, there is a trivial statistical test 
to distinguish a measured time series from a 
GRP. A time series x(t) has a one-time prob- 
ability density p(x)  which is often termed a 
"histogram". The histogram of many time series 

is not Gaussian, while a GRP does have a Gauss- 
ian histogram. This fact does not have much 
significance from a dynamical point of view, 
since the histogram of a measured time series 
can be reshaped by a nonlinear transformation of 
the time series itself, which does not effect the 
underlying dynamics. Thus, a time series from a 
GRP may be passed through a static nonlinear 
filter (e.g., x ( t ) =  y2(t)) which can produce a 
non-Gaussian histogram. 

The irrelevance of the histogram to the sys- 
tem's dynamics *~ should be reflected in the anal- 
ysis t echn ique-  the results should not depend 
strongly on a dynamically irrelevant static non- 
linear transformation. Theiler et al. [21] have 
suggested rescaling measured time series to give 
them a Gaussian density before comparing them 
to GRPs. 

In the case of coarse-grained flow averages, 
the shape of the histogram is not critical to the 
results obtained. The reason for this can be 
understood as follows: any static nonlinear trans- 
formation applied to the time series x(t) applies 
similarly to all components of the embedded 
vector x(t).  At any point in the phase space, this 
static nonlinear transformation of the time series 
amounts to a locally linear, diagonal transforma- 
tion of the phase space. Although such trans- 
formations may change the angles between vec- 
tors, acute angles are kept acute and obtuse 
angles are kept obtuse. Thus, trajectory vectors 
that originally had similar orientations will not, 
under the transformation, end up having oppos- 
ing orientations. 

The effect of a variety of static nonlinear 
transformations on A from time series from the 
Lorenz equations and the corresponding GRP 
are shown in fig. 7. To a great extent, .4 from all 
of the transformed random time series behave 
like the GRP, and the A from the transformed 
deterministic time series behave much like the 
original Lorenz system. However, for time series 

*~ Second- and higher-dimension probability densities, e.g. 
p(x(t), x(t - r)) are not generally irrelevant to the dynamics. 
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Fig. 7. ft. versus r for a t ime series from the x -component  of  the deterministic Lorenz system and for a GRP  with the same ~ ( T ) .  
O the r  t ime series were derived from the Lorenz and the G R P  by application of the indicated static nonl inear  t ransformat ions .  
Square  xZ(t); Cubic x3(t), Abs  Ix(t)l; togAbs log(Ix(t)l); Sine sin x(t)/8. Time series l e n g t h =  10000, ~" = 0.75, m = 3 ,  box 
resolution 1/16 (for Gauss ian and square,  1/32; for cubic 1/128). 

with long tails, the box size E must be small 
compared  to the overall range of the histogram 
in order  to prevent  the majority of points from 
falling into just a few boxes. 

8. Noise 

The division of dynamical systems into the two 
categories of deterministic and stochastic is 
largely a matter  of notational convenience. Noise 
is almost always involved in the measurement of 
time series. This implies the addition of a sto- 
chastic component  to the embedding reconstruc- 
tion of otherwise deterministic systems. In addi- 
tion, the dynamics of all real-world systems are 
influenced by an environment:  the complexities 
of the environment  usually dictate that they be 
t reated as random forcing of the system. 

The distinction we have made up to now has 
been between strictly deterministic systems and 
globally linear dynamical systems forced by ran- 
dom noise (and perhaps with a static nonlinear 
transformation applied to the measured time 
series). This distinction is useful partly because 
linear systems cannot produce chaos. 

What  about nonlinear dynamical systems with 
a stochastic element? The case that is often of 
interest is when the stochastic element is 
"small" ,  so that much of the dynamics of interest 
would arise even in the absence of the stochastic 
element.  An important issue is the extent to 
which such underlying nonlinear deterministic 
dynamics can be seen through the haze of the 
stochastic influence. 

A situation that is relatively easy to analyze 
and of wide relevance is additive measurement 
noise. Numerical experiments conducted by add- 
ing noise to various deterministic signals suggest 
that the method is fairly robust to the addition of 
noise: although fi~ < 1 in the presence of noise, it 
is still often possible to distinguish between the 
noisy deterministic time series and a GRP with 
the same ~ ( T )  even when the signal-to-noise 
ratio is 2:1.  (See fig. 8.) 

The power spectrum of the added noise is of 
critical importance here. Adding white noise 
quickly degrades the value of fi, unless a box 
traversal time threshold is used in eq. 3 or the 
time series is low-pass filtered so that it becomes 
strongly correlated over the box traversal time. 
Certain types of "opt imal"  linear filters attempt 
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Fig. 8 . . , t  versus signal-to-noise ratio f o r  the Lorenz system 
m = 3, z = 0.75, 6 = 1/64. To construct the noisy time series, 
a G R P  having the  same ~ ( T )  as the deterministic t ime series 
was added at the  indicated ampli tude ra~ios. The  value of 
for the  pure G R P  is 0.00 + 0.02. 

to shape the noise to the power spectrum of the 
underlying signal [27]; this is appropriate here. 
However ,  a simple low-pass filter can be quite 
effective. For  pseudo-white noise (where the 
highest frequency is 50 cycles per time unit) 
added to the Lorenz system, low-pass filtering 
allows the distinction to be made between the 
deterministic system and a GRP even when the 
signal-to-noise ratio is 1 : 2 (before filtering). The 
behavior  of the noise's autocovariance function 
~w(T) near T =  0 determines whether it is best 
to use large or small box size e: large box size is 
often useful for dealing with exponentially corre- 
lated noise, while small boxes can be used when 
the noise has a fiat ~w(T) near T = 0. 

The case of random influences on the dy- 
namics themselves is much harder to analyze and 
remains a subject for further investigation. For 
chaotic systems, random noise added to d z / d t  
can be amplified by the positive Lyapunov expo- 
nents. One effect of this is that the fall-off of 
with z (see section 9.1.2) occurs at smaller ~" as 
the random forcing is increased in amplitude. 

9. Examples 

This section presents an analysis of time series 
from a variety of sources. Some of the examples 
are known to be deterministic, while in others 
the question of determinism must be answered 
by analysis of the time series itself. We first 
examine some time series where determinism is 
evident in a three-dimensional e m b e d d i n g -  the 
lowest possible effect embedding dimension for a 
continuous-time chaotic system. Then,  systems 
where this is not the case are studied. A is used 
throughout  as a test statistic. 

9.1. Low-dimensional  systems (m = 3)  

9.1.1. The Rossler system 

The Rossler system [28] 

: ~ = - ( y +  z) ; )~ = x + 0.15y ; 

= 0.2 + z (x  - 10) 

has been widely studied as an example of low- 
dimensional chaos. Its autocovariance function 
oscillates with an envelope that decays very 
slowly. 

Consistent with the system's determinism, A 
1 for a wide range of ~-. (See fig. 9.) An oscilla- 
tion in A is evident whose minima occur when 
qt(l-) is at an extremum. In these cases, the 
embedded time series has the shape of a narrow 
cigar (since ~(T)~- - -1)  and a box may cover 
both the ascending and descending limbs of the 
trajectory. When ~" is large compared to the 
pseudo-period of the time series, A at these 
minima falls slowly to zero. 

A Gaussian random process (GRP)  generated 
with the same qt(r) has a smaller A(~-) than the 
deterministic system. As derived theoretically in 
Section 5. A---)0 when ~(~-) is at a maximum or 
minimum, but at other  ~-, A > 0. This is due to 
the high predictability of the spectrally narrow- 
band random signal. This effect can be made 
small by making the box size ~ small. 
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Fig.  9. fi~ versus  ~" for  the  Ross l e r  x - c o m p o n e n t  and  a G R P  wi th  the  same  ~ ( T ) .  The  inse t  shows  a shor t  s e g m e n t  of  the  R o s s l e r  
t i m e  ser ies ;  the  b a r  ind ica tes  the t i m e  scale ,  m = 3, E = 1 /128.  

An analysis of another  low-dimensional de- 
terministic system, the Lorenz system, can be 
found in ref. [10]. 

9.1.2. Belousov-Zhabotinskii reaction 
The Belousov-Zhabot inski i  reaction is an os- 

cillating chemical reaction. The time series 
studied here comes from an experiment involv- 
ing a continuously stirred reactor into which the 
various chemicals were fed at a constant rate 
[30,31]. The time series consists of measure- 
ments of the bromide ion potential with approxi- 
mately 14-bit resolution. The oscillations in the 
bromide ion potential are superficially like a 
saw-tooth wave of varying height. 

For  a wide range of ~-, A ~-1, indicating the 
system's determinism. (See fig. 10.) The corre- 
sponding G R P  produces a A that falls off rapidly 
to near  0, particularly at extrema of ~(~-). The 
fall-off of the deterministic fi~ with ~- suggests 
ei ther a Lyapunov exponent  (bits/pseudo- 
period) that is somewhat larger than that for the 

Rossler system, or noise affecting the dynamics. 
A G RP  is not satisfactory as a surrogate for 

the BZ time series: it does not capture the 
obvious time asymmetry and sawtooth nature of 
the BZ data. To assess the extent to which the 
non-zero fi~ in the BZ arises simply from the 
sawtooth appearance,  we generated a time series 
consisting of constant slope ascenders and de- 
scenders, whose amplitude endpoints were ran- 
domly selected from the segment endpoints 
found in the BZ time series. (See fig. lb.)  Con- 
sistent with the deterministic mechanism of this 
synthesized signal over short times, A is close to 
1 for short ~-. Within approximately 2 pseudo- 
cycles, however,  A has fallen to near z e r o -  
much faster than for the BZ data itself. The 
observed determinism of the BZ time series 
therefore  goes well beyond that due to its saw- 
tooth shape. Note that if an embedding lag 
~- < 50 were used, it would be hard to distinguish 
the determinism of the BZ time series from the 
piecewise linear random time series. Such short 
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Fig. 10..4 versus 7 for the Belousov-Zhabotinskii time series (fig. la), a Ganssian random process, and the synthesized 
piece-wise linear random time series (P-L Random). B-Z data provided by H. Swinney. 

embedding lags are commonly used in dimension 
calculations [29]. 

9.1.3. Measles 
The number of measles cases reported each 

month in New York City has been recorded since 
1928. Sugihara and May [9] analyzed the time 
series for 1928-1963 by assessing its predictabili- 
ty using linear and nonlinear models, and con- 
cluded that it shows signs of deterministic chaos. 
The dimension and Lyapunov exponent of the 
time series have been examined by Schaffer et 
al. [32]. 

A for the measles time series (fig. 11) is clearly 
above that for a corresponding GRP, although 
even for the measles, .4 ~ 0 when ~( r )  is at an 
extremum, which occurs at 6 month intervals 
(corresponding to oscillations with a pseudo° 
period of 1/year). There is, however, an obvious 
dissimilarity between the GRP and the measles 
time series. A histogram of the measles time 

series shows a sharp peak near zero ~ind long 
tails that correspond to the yearly winter spikes 
in the number of measles cases. This is very 
different from the Gaussian histogram of the 
GRP. This difference can be reduced by statical- 
ly transforming the measles data x(t) to generate 
a new time series y(t)= g(x(t)). 

The transformation g(. ) can be chosen in a 
number of ways; we used g(x) = x 1~5 (where the 
real root is taken), which produces a histogram 
of y(t) without long tails, fil for x(t) and ./] for 
y(t) are very similar, consistent with section 7. 
However, the GRP based on y(t) has a more 
slowly decaying autocovariance function than 
x(t). This produces a ,4 for the y(t) GRP that 
shows periodic peaks, reducing the difference 
between A for y(T)  and the GRP. 

An interesting aspect of A for both x(t) and 
y(t) is that A---,0 for ~ '=6,  12, 18 , . . .  months. 
This suggests that points in x(t) separated by 
multiples of 6 months are dynamically unrelated 
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for the Measles time series. Data  provided by G. Sugihara through the Santa Fe Institute. 

to one another; in particular one year's level of 
measles is not predictable from the previous 
year's. (This is consistent with the numerical 
results of Sugihara and May (fig. 4d in [9]).) 

The yearly winter peaks in measles cases are 
due to an increase in the contact rate between 
infectives and susceptibles during the winter [33]. 
A possible model for the measles time series is 
yearly winter peaks of random amplitudes (see 
fig. lf). This model is a mixture of deterministic 
dynamics (the strictly regular phase the yearly 
oscillation) and randomness (the amplitudes of 
the peaks). A for this model shows a pattern 
similar to that observed in the measles time 
series, suggesting that much of the observed 
determinism of the measles time series is due to 
the seasonal nature of measles. 

The second half of the time series shows alter- 
nating high and low peaks, suggesting a de- 
terministic mechanism for the amplitudes of the 
peaks. Such observations are perhaps better 
studied by Poincar6 return maps than the meth- 
ods described in this paper. 

9.1.4. Sunspots 
A record of the number of visible sunspots 

each month has been kept since 1610 [34]. This 
record shows somewhat irregular peaks at inter- 
vals of approximately 11 years together with 
month-to-month variability. 

No significant difference was found between 
for the sunspots and A for the random signal. To 
avoid the influence of high-frequency noise in 
the time series (see sections 3 and 8), both were 
low-pass filtered using a 31-month cosine filter. 
After filtering, A (fig. 12) clearly shows signs of 
nonlinear determinism in the >3 year variability 
in sunspots numbers. Similar values for A are 
found if the filtered time series are rescaled to 
produce a uniform histogram. These results are 
consistent with previous studies that have found 
the time series to be better modelled with non- 
linear rather than linear models [35,21]. 

9.2. High-dimensional systems 

High-dimensional systems pose a difficult 



D.T. Kaplan, L. Glass / Coarse-grained embeddings of time series 449 

Sunspots, low pass filtered 

o random V ' ~ "  " ~  ' ~  -~ , ,w ,~ , , .~  
0 . 8  lO"-'~s 

0 6  

0.4 

o.;\ 
0.5- 

0.0- 

-0.5 - 
1'0 X (years) 2'o 

Fig. 12. zi versus ~" for the low-pass filtered sunspots data ( the lower signal on the inset). 

problem for analysis. If the linear extent of the 
region of phase space occupied by the trajectory 
is 1, and the box size is E, then e -m boxes are 
needed to cover the relevant region of the phase 
space. For example, f o r  a 10-dimensional em- 
bedding and boxes of size 1/32, 25°~- 1015 boxes 
are needed. Quite aside from the computational 
problem of keeping track of this number of 
boxes, the length of the time series needed to 
generate multiple passes through many boxes is 
immense, and unlikely to be encountered in 
practice. 

9.2 .1 .  A de lay -d i f f e ren t ia l  equa t ion  

Delay-differential equations are, in principal, 
infinite-dimensional systems, but in some cases 
the attractors for such systems are finite-dimen- 
sional. The delay equation 

d x  ax (  t - 8 ) 
d t  - 1 + x ( t  - 6 )c  b x ( t )  (36) 

has been proposed as a model for nonlinear 
feedback control in physiology [36]. It has been 

widely studied in the context of nonlinear dy- 
namics [37,3] in part because attractors of differ- 
ent dimension are found for different values of 
the parameter 8. For a = 0.2, b = 0.1, c = 10 and 
8 = 100, eq. (36) has an attractor whose esti- 
mated dimension is -7 .5  [3]. This suggests that 
an appropriate embedding dimension is m-> 8. 

For an embedding dimension of 10 and a time 
series of length 1.32 x 105 time units, the small- 
est useful box resolution is 1/4. The relationship 
between A and ~- (fig. 13) shows that A is bigger 
for the deterministic time series than the random 
one - this shows that A distinguishes between the 
high-dimensional delay-differential system and a 
GRP, even if the time series are very similar to 
the eye (fig. li  and j). 

Casdagli [8] investigated the system of eq. (36) 
by constructing an ad hoc predictor model from 
the time series. He found that it was possible to 
make informative predictions using z = 6. Fig. 13 
suggests that it is possible to distinguish between 
the deterministic system and a GRP even at ~- 
much larger than this. 
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Fig. 13. A versus ~" for a time series of length 5 x 104 time 
units from equation 36 and for a random signal with the same 
~(T). m = 10 and the box edge length is 1/4 the amplitude 
range of the time series. 

An  interesting aspect of eq. (36) is that d x / d t  

at time t is a simple function of x( t  - 8 ) and x( t ) .  

This means that when the time series is embed- 

ded with a delay ~-= 8 /k ,  k = 1, 2, 3 . . . .  one 

component  of the tangent vector to the trajec- 
tory is a simple function of another component  

of the position in phase space. At  other embed- 

ding lags, these components are only indirectly 

related to one another; the relatively fast oscilla- 

tions ( < ~ )  of the time series suggest that this 

relationship is complicated. At one extreme, 
when ~- = ~, component  k of the tangent to the 

trajectory depends only on component  k -  1 of 

the position in phase space - this creates a strong 

dependence between the trajectory vector and 
phase space position even when the embedding 

dimension is not adequate to represent the at- 

tractor. Indeed, A shows peaks at 0- = 100 and 50 

(and perhaps at 33 and 25 as well). When 0- = ~, 

an embedding dimension of m = 3 is adequate to 

demonstrate determinism, although at other z 
this is not the case. We can offer no explanation 

for the small peak observed at ¢ = 200. 
The coarse box resolution used in the analysis 

prevents A---> 1 at a theoretically satisfactory em- 

bedding dimension. There are hints of deter- 

ministic structure in the time series for embed- 

ding dimensions <6,  but the box resolution does 
not appear to be the limiting factor in A. (See 

fig. 14.) At  higher embedding dimension, how- 

ever, smaller boxes lead to lager A. For the 
random time series, A is more or less indepen- 

dent of box size or embedding dimension. 

For  the length of time series analysed, it is 
possible to use boxes as small as 1/16 with 

m = 10 and still have several boxes with two 

Delay-Diff. Eq. GRP 

0.3- 0.3 - 
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0.1 
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E m b e d d i n g  d i m e n s i o n  E m b e d d i n g  d i m e n s i o n  

Fig. 14..4 versus embedding dimension m for various values of box resolution. The symbols indicate the box resolution used, 
e.g., 8 indicates a resolution of 1/8 the amplitude range of the time series. We selected 7 = 75 as marked by the arrow in fig. 13 in 
order to minimize the effects of the peaks shown in that figure. (Time series length is 1.32 × 105.) 
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passes of the trajectory. However ,  there may be 
a "selection bias" in these boxes towards larger 
A. This possibility can be assessed by reference 
to the random time series - when boxes are small 
so that a very small fraction of boxes have 
multiple passes of the trajectory, /1 for the ran- 
dom time series can increase dramatically from 
its value with larger boxes. 

9.2.2. Coupled nonlinear oscillators 
The time series shown in fig. lm originates in 

an experimental  electronic nonlinear circuit con- 
sisting of a harmonic oscillator driving 8 induc- 
tively coupled diodes [38]. The harmonic forcing 
of the circuit gives the power spectrum of the 
time series a sharp peak at this frequency. The 
embedded time series is - at large length scales - 
grossly like a limit cycle. When a coarse box 
resolution of 1/8 is used to calculate fi~, the 
results are consistent with a noisy limit cycle, and 
the nonlinearity of the system can be seen even 
in a 2-dimensional embedding. (See fig. 4.) 

Because the trajectory is far from filling the 
phase space uniformly (unlike the delay-differen- 
tial system), it is possible to use small boxes 
(1/32) in high-dimensional embeddings. Using 
small boxes allows details of the dynamics to be 
resolved beyond those of the coarse limit cycle. 

indicates that in a 4-dimensional embedding, 
the time series is only distinguishable from a 
G R P  at ~- < 200. (fig. 15.) When m = 6, however, 

shows strong signs of nonlinear determinism, 
which is further increased when m = 8. This sug- 
gests that higher-dimensional embeddings are 
untangling the dynamics. A for the GRP is simi- 
lar for m = 4.6. (ill for the GRP embedding in 
8-dimensions cannot be calculated at this box 
size, since so few boxes have multiple passes of 
the trajectory.)  We note without explanation the 
dip i n / t  for the time series at z = 400. 

9.2.3. Heart  rate 

T h e  t i m e  i n t e r v a l  b e t w e e n  h e a r t  b e a t s  va r i e s  

f r o m  b e a t  t o  b e a t .  I t  ha s  b e e n  s u g g e s t e d  t h a t  in 
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Fig. 15. z[ versus ¢ for the nonlinear electronic circuit time series and a corresponding GRP. g = 1/32. The inset shows a short 
segment of the time series, which had a total length of 200000 points (1000 pseudo-periods). Data provided by P. Linsay. 
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Fig. 16. A versus ~" for low-pass filtered heart rate data and a corresponding GRP. m = 6, ~ = 1/16. The inset shows a short 
segment of the time series, which had a total length of 2048 beats. Data provided by M. Talajic. 

healthy individuals, heart rate is the output of a 
deterministically chaotic system [39]. Figure lk  
shows beat-to-beat  intervals between heart beat 
over  30 minutes recorded from a healthy, adult 
subject. The  corresponding GRP appears similar 
by eye. No claim can be made that this one 
record is representative of heart  rate in general. 

The  relationship between 5, and ~" for this time 
series shows no difference between the original 
t ime series and the GRP. To some extent, this 
may be due to the very rapid fluctuations in 
heart  rate. To test this possibility, we filtered the 
heart  rate signal and the corresponding GRP in 
two ways: (i) a low-pass filter below 0.1 Hz and 
(ii) a band-pass filter between 0.1 and 0 .4Hz.  
These two bands correspond to frequency re- 
gions believed to be of physiological significance 
in heart  rate [40]. Neither of the filtered signals 
showed signs of nonlinear determinism for rn = 4 
or m = 6. Use of higher embedding dimensions is 
limited by the time series length. 

I0. Summary 

In this paper, we address the issue of deciding 
whether  a time series is from a deterministic or a 
stochastic system. The basis we suggest here for 
this decision is whether a delay-embedding of the 
time series is consistent with a flow that is a 
single-valued function of position in phase 
s p a c e -  whether the flow through nearby points 
in the phase space goes in similar directions. The 
method of local coarse-grained flow averages and 
the statistic 5, offer a practical means of assessing 
the single-valuedness of the flow for an embed- 
ded time series. 

A limiting case for stochastic systems occurs 
when the trajectory is equally likely to point in 
any direction in phase s p a c e -  this corresponds 
to Brownian motion, f i ,=0  for this case, in 
contrast with the situation for ideal determinism 
where fi~ = 1. 

However ,  even stochastic systems can have 
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trajectories that may be locally parallel. For 
Gaussian random processes (GRP), the coarse- 
grained flow average depends only on the em- 
bedding parameters and the autocovariance 
function of the time series, and has certain uni- 
versal features. Because of the generality of 
GRPs and the fact that they model linear dy- 
namical systems, a GRP is a good "null hypoth- 
esis" for a time series. A straightforward test for 
chaotic dynamics in a time series is to compare 
of the time series and of a corresponding GRP. If 
there is no embedding dimension where .~ of the 
time series is greater than that of the GRP, no 
evidence is provided for chaos. If A is larger in a 
statistically significant way for the time series 
than for the GRP, then there is evidence for 
nonlinear determinism- but the most that can 
definitely be said is that the lime series is incon- 
sistent with a GRP or a static nonlinear trans- 
formation of a GRP. 

If a deterministic system generating a time 
series is low-dimensional (e.g., m = 3), A may 
approach 1 (the value for  ideal determinism), 
even when a corresponding GRP has A near 0. 
In the presence of additive noise, the coarse- 
grained flow averages are degraded towards the 
random value, but numerical experiments indi- 
cate that a signal-to-noise ratio as poor as 2: 1 (in 
amplitudes) does not prevent the distinction 
being made between a deterministic system and 
a corresponding GRP. 

For time series from high-dimensional systems 
(e.g., m = 8), the test can in practice provide 
only an indication of nonlinear determinism. The 
primary limitation here is the length of the time 
series. For short time series and the consequent 
large box size needed for averaging, the A statis- 
tic may fall substantially below 1, although it 
may be easily distinguishable from the .~ of a 
corresponding GRP, even when the signal-to- 
noise ratio is 5 : 1. An increase in _~ with m may 
also provide an indication of high-dimensional 
determinism. 

We believe that the method of coarse-grained 
flow averages should prove useful in a variety of 

contexts. For the calculation of dimension and 
Lyapunov exponents from deterministic time 
series, the method should be able to provide an 
independent means of selecting an appropriate 
embedding dimension. For modelling of time 
series, the method can indicate whether de- 
terministic nonlinear dynamics should be empha- 
sized over stochastic dynamics. 
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