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ABSTRACT  Biomedical signals often vary in a complex and irregular manner. Analysis of variability in such signals generally does not
address directly their complexity, and so may miss potentially useful information. We analyze the complexity of heart rate and
beat-to-beat blood pressure using two methods motivated by nonlinear dynamics (chaos theory). A comparison of a group of
healthy elderly subjects with healthy young adults indicates that the complexity of cardiovascular dynamics is reduced with aging.

This suggests that complexity of variability may be a useful physiological marker.

INTRODUCTION

Normal human aging is associated with a progressive
impairment in several physiologic control systems that
interact to maintain cardiovascular homeostasis. Variabil-
ity in heart rate and blood pressure has been used to
study the function of the cardiovascular control system
(1-12). Recently, a general qualitative hypothesis of
variability and pathology has been proposed; the dynam-
ics of the healthy physiological control system produce
an apparently irregular and highly complex type of
variability, whereas disease or aging is often associated
with more regularity and less complexity (13, 14). Chaos
theory provides two methods of quantifying complexity-
entropy and dimension- that can be modified to make
them applicable to systems that may not fit into the
deterministic framework of chaos, i.e., systems that are
genuinely random or that are of such high order that
they cannot be adequately described from available
lengths of data.

In the study reported here, continuous, noninvasive
blood pressure and heart rate were analyzed in 16
healthy young adults and 18 healthy elderly subjects. We
found that the older subjects had a lower complexity in
both heart rate and blood pressure, despite a larger
blood pressure variance. The results support the propo-
sition that increased regularity is associated with aging,
and show that complexity can be measured in a consis-
tent way between individuals.

We collected beat-to-beat systolic blood pressure and
heart rate signals from healthy adults in two groups:
young (age 21-35, mean 28) and elderly (age 62-90,
mean 75), none of whom was taking cardioactive drugs.
Each subject was studied in three different conditions.
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First, while lying in a supine position on a tilt-table, the
subjects breathed along with a metronome signal (0.25
Hz), regulating tidal volume themselves. Next, while
remaining supine, the subjects breathed quietly in a
spontaneous rhythm. Finally, the subjects were inclined
to a 60° head up position and continued to breathe
quietly in a spontaneous rhythm. These three conditions
will be called metronome, quiet, and tilt, respectively.

The heart rate signal was derived from one channel of
a digitized electrocardiogram (ECG). Continuous blood
pressure was measured noninvasively by use of arterial
tonometry applied to the radial artery (15) (CBM 3000;
Colin Electronics; Komaki-City, Aichi, Japan). Both the
ECG and continuous blood pressure signals were sam-
pled at 250 Hz and digitized with 12-bits resolution. A
tachometer (16) was used to generate heart rate and
systolic blood pressure signals sampled at 5 Hz. Care was
taken to minimize the influence of cardiac ectopy on the
heart rate signal.

For each subject, the mean, standard deviation, and
power spectrum of heart rate and systolic blood pressure
were calculated using a 409-s long segment of data. (See
Table 1.) Mean heart rate is similar for old and young,
but the variance is lower for old compared to young (4,
17). Systolic blood pressure is higher in the old group,
and the variance of systolic blood pressure is also
somewhat higher in old compared to young (18).

The shapes of the power spectra of heart rate and
blood pressure also show differences between old and
young. Most notable is the amount of respiratory varia-
tion in heart rate: when supine, young people have
considerably more respiratory variability than old, al-
though this difference largely disappears upon tilting.
This change probably reflects reductions in parasympa-
thetic control of heart rate during tilt, which are propor-
tionally greater in young than old (3, 17).
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TABLE 1 Group characteristics of heart rate and biood pressure

Metronome Quiet Tilt
old young old young old young
Heart Rate (bpm)
mean 63.2 (8.9) 61.0 (6.4) 60.9 (8.0) 61.1 (6.5) 69.8 (11.0)* 77.8 (9.2)
SD 2.1 (1.0)* 3.4 (1.0) 2.8 (0.8)* 4.1 (1.0)* 3.0 (1.0)* 5.5(1.8)
resp. var. (%) 22.4 (12.4)* 40.6 (13.2) 13.8 (8.2)* 30.1 (13.0) 12.9 (9.0) 16.3 (8.4)
Systolic Blood Pressure (mmHg)
mean 127 (12)* 117 (17) 132 (21)* 109 (14) 128 (20) 108 (15)
SD 43(23) 3.9(2.5) 5.6 (3.8)* 3.2(1.3) 6.6 (3.1)* 502.7)
resp. var. (%) 14.3 (9.7) 17.7 (14.8) 8.3(6.2) 12.2(5.8) 9.2 (4.3)* 17.8 (7.4)

The mean, standard deviation (SD) (that is, the square root of variance), and percentage of total variance in a respiratory band (resp. var.) (0.1 to
0.3 Hz) for the heart rate and blood pressure signals. Shown are the means of these measures for each group with the group SD of the measure in
parentheses. *Indicates that the difference between the old group (n = 18) and young group (n = 16) is significant at the p < 0.02 level using a

two-tailed Student’s t-test.

Although differences between old and young are
clearly reflected by these measures of variability in heart
rate and blood pressure, they do not directly address the
complexity of the heart rate and blood pressure signals.
Complexity is a different concept than the amount of
variability as might be measured by the variance of a
signal. For example, two sine waves of different ampli-
tudes might be thought of as equally complex, although
their variances are different.

The theory of chaos can provide a meaningful defini-
tion of complexity and means of quantifying it. One way
to measure complexity is via the dimension of the
dynamical system needed to express the signal. For a
deterministic system the dimension is often interpreted
as the number of dynamic variables in the difference or
differential equations needed to construct a dynamical
system that will reproduce the measured signal, al-
though this interpretation is sometimes problematic.’
From this perspective, a random signal is maximally
complex, with infinite dimension for an infinitely long
signal. A periodic system has dimension one. Another
way to quantify complexity is by entropy, which deals
with the amount of information needed to predict the
future state of the system. Again, more complex dynam-
ics are represented as a larger entropy, and random
noise is maximally complex (19). (For an alternative
perspective, see reference 20a,b and 21.)

Numerical methods exist that allow the dimension
and entropy to be estimated from a time series (22-24).
These algorithms require that signals be measured for
long periods without any change in the parameters of
the system under study. Such signals may not be avail-
able for physiological systems.

'For a system measured after transients have died out, that is, a system
whose trajectory is on an attractor, the dynamical variables related to
transients will not be represented in the dimension.

We have modified the correlation dimension and
Kolmogorov entropy algorithms to generate statistics
that appear to be usable with hundreds of seconds of
heart rate and blood pressure data. These statistics, the
“approximate dimension” and “approximate entropy,”
lose the property to demonstrate deterministic chaos,
but retain an ability to distinguish data sets by a measure
of complexity. The algorithms can also be applied to
distinguish classes of stochastic processes from one
another. The values obtained from the algorithms should
not be interpreted as estimates of the correlation dimen-
sion or Kolmogorov entropy of the system, but as a
distinct measure of complexity.

Both the approximate entropy and dimension are
derived from the correlation integral C*(r) which is the
number of points in the signal closer than distance r to
the ith point when embedded in an m-dimensional
space. A family of approximate entropy statistics is
defined by ApEn (m, r) = ®"(r) — ®™*'(r), where

i _ N-m+l | C:"(r)
() = ; N-m+1
Based on theoretical calculations and a study of neona-
tal heart rate (25) for data sets of 1,000 beats, the choice
of m = 2, r = 0.2 times the signal’s standard deviation,
and an embedding lag of approximately one beat (0.8 s)
appears to produce a useful ApEn statistic. These input
parameters were employed in the results reported here.
The approximate dimension is defined as
InC(,) —InC(,)

vV =E
Inr,—Inr, °’

where C(r) = =X’ C/°(r). Any two points in the
embedded signal are separated by some distance; we can
speak of a “distance between a pair of points.” C(r)
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describes the distribution of distances r between the
~N(N — 1)/2 pairs of points in the embedded signal. r,
is selected as the distance r that only 0.5% of the pairs of
points are closer than. Similarly, r, is the distance that
only 75% of the pairs of points are closer than. This
means C(r,) = 0.005 and C(r,) = 0.75. Thus, v reflects
the slope of the correlation integral over the lower = 3/4
of its vertical scale. The purpose of selecting 7, and r, in
this way is to minimze the effects of external noise in the
signal (noise often manifests itself at small length
scales), and to make the calculations robust to outliers in
the measured signals that would distort the largest
length scales.

For the present study, using one of the studied signals
as an exemplar, we set the embedding dimension tom =
10 with a lag window length of 29 s. For reference, the
characteristic time scale of respiratory variability in
heart rate and blood pressure is typically 4-5 s. The time
scale for sympathetic and thermoregulatory variability is
typically 10-20 s (26).

These methods of calculating the approximate dimen-
sion and entropy are independent of the mean and
variance of the signal, and allow the same range of
dynamical length scales to be considered for all the
signals analyzed. The dimension is often calculated by
others by looking at the slope of the most linear
segments of the correlation integral (27-29). These
techniques involve a means of evaluating a “score” for
each plausible linear segment of the correlation integral
(e.g., the score might be based on the length of the linear
segment and the goodness of fit to a line). The “best”
linear segment is chosen. Whereas these techniques
emphasize the possible existence of strange attractors,
the length scale chosen can depend discontinuously on
the signal because a small change in the signal can
change the relative ranks of the candidate linear seg-
ments and thereby change the calculated dimension
substantially. Because our technique does not examine
the linear scaling of the correlation integral, it is im-
proper to interpret the dimension we calculated as the
dimension of an attractor. Similarly, it would be incor-
rect to infer from our analysis of dimension that an
attractor necessarily exists.

The approximate dimension was lower for the old
group than for the young for both blood pressure and
heart rate for each of the conditions. (See Table 2.) In
four of the six categories, this difference is significant at
the p < 0.02 level. A similar result holds for the
approximate entropy of the signals: the old group has a
smaller mean entropy than the young group. A scatter
plot of the calculated dimensions and entropies for heart
rate and blood pressure during quiet breathing indicates
that the difference between the old and young groups is

TABLE2 Group means (SD) of the approximate entropy and
dimension of the heart rate and blood pressure signals

Dimension Entropy
state  signal old young old young
metro h 3.82 (0.41)* 4.33(0.31) 0.88(0.07)* 0.94 (0.04)
bp 3.39(0.71) 3.70 (0.73) 0.78 (0.14) 0.81 (0.12)
quiet h 3.41 (0.57)* 4.20(0.53) 0.79 (0.12)* 0.90 (0.04)
bp 3.12(0.61)* 3.61 (0.46) 0.69 (0.15)* 0.81 (0.10)
tilt h 3.69 (0.70) 3.88 (0.42) 0.84 (0.13) 0.81(0.07)
bp 3.23(0.73)* 3.94 (0.43) 0.73 (0.15)* 0.86 (0.06)

*Reports statistical significance; see the caption for Table 1.

not the result of a few outlying individuals but is
representative of the group as a whole. (See Fig. 1.)

To what extent do these differences in complexity
simply restate already known differences in heart rate
and blood pressure variability between old and young?
The approximate dimensions and approximate entro-
pies were calculated in a manner that makes them
completely independent of the mean and variance of the
signal. This independence of the dimension and entropy
from the variance is highlighted by the fact that both
entropy and dimension are lower for the old group than
for the young for both heart rate and blood pressure,
whereas the variance of the old group was less than that
of the young group for heart rate and greater for blood
pressure.

To investigate the role that differences in the respira-
tory component of heart rate and blood pressure play in
the approximate dimension and entropy, we repeated
the calculations on the heart rate and blood pressure
signals after digitally filtering them to pass only their
respiratory-band (0.1-0.3 Hz) components. For blood
pressure and heart rate, for all three conditions, the
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FIGURE1 A scatter-plot of the approximate dimension and entropy
for each of the subjects during quiet breathing. Each subject is
represented once in each of the two graphs.
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dimension and entropy were lower for the old group
than the young. In four of the six categories, this
difference was significant at the p < 0.02 level. The
dimensions and entropies of the respiratory-band sig-
nals were in every case less for metronome breathing
than for quiet breathing or tilt. This corresponds to the
intuitive notion that breathing to a metronome should
produce simpler patterns than spontaneous breathing.

Because all subjects were either supine or tilted, it
does not appear that the lower complexity for the old
group can be ascribed to different activity levels of the
two groups. As the differences in complexity between
old and young were similar for metronome and quiet
breathing, simple differences in breathing patterns do
not account for the results, which appear to reflect
genuine changes with aging in the physiological control
of the cardiovascular system.
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