< T T U

Modeling-Based Calculus with
R/mosaic

Daniel Kaplan

Dept. of Mathematics, Statistics, and Computer Science
Macalester College
1600 Grand Ave.

St. Paul, MN 55105
kaplan@macalester.edu

Cecylia Bocovich

Cheriton School of Computer Science
University of Waterloo

200 University Ave W

Waterloo, ON N2L 3G1

Canada

cbocovic@uwaterloo.ca

Randall Pruim

Dept. of Mathematics and Statistics
Calvin College

Grand Rapids, MI

49546

rpruim@calvin.edu

Introduction: Software for Calculus

The choice of software for teaching calculus depends on several objec-
tives and constraints, including:

e availability;

e instructor experience;

e graphics, symbolic, and numerical capabilities;
e and steepness of the learning curve.

When calculus is taught from a modeling perspective, other objectives
ought to be considered:

The UMAP Journal 36 (1) (2015) 23-51. ©Copyright 2015 by COMAP, Inc. All rights reserved.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice. Abstracting with credit is permitted, but copyrights
for components of this work owned by others than COMAP must be honored. To copy otherwise,
to republish, to post on servers, or to redistribute to lists requires prior permission from COMAP.

e support for a broad range of modeling techniques, and

e the potential for use of the software in other, non-calculus, modeling
courses.

R/mosaic for Calculus

We describe a powerful, expressive, and free computing environment
that few calculus instructors have explored: R with the mosaic package
[Pruim 2011]

Although R is most closely associated with statistics and data analysis,
R is designed to be extensible, and it contains capabilities for symbolic
manipulation, differentiation, and integration.

The mosaic package provides commands to make it easier to teach and to
learn introductory calculus, statistics, and modeling. The principle behind
mosaic is that a notation can support learning more effectively when it

e draws clear connections between related concepts,
e is concise and consistent, and
e avoids distracting boilerplate.

At the same time, R/mosaic facilitates bringing data into the modeling
process, thus broadening the repertoire of functions that can be used in
modeling, adding, for instance, fitted functions, smoothers, interpolators,
and discontinuous functions.

Although mosaic also includes extensive facilities for teaching and doing
statistics, here we describe just the calculus-related features and their use
in modeling.

Calculus, as developed historically and in the main as taught today, has
little or nothing to do with statistics. Calculus software is generally asso-
ciated with computer algebra systems (CAS) such as Mathematica, which
provide the ability to carry out the operations of differentiation, integration,
and solving algebraic expressions. Traditionally, the calculus curriculum
has emphasized symbolic algorithms and rules (such as ™ — nz"~" and
sinz — cosz). Computer algebra systems provide a way to automate such
symbolic algorithms and extend them beyond human capabilities, but they
are not designed to support the process of modeling.

The mosaic package provides computer functions implementing the core
operations of calculus—differentiation and integration—as well plotting,
modeling, fitting, interpolating, smoothing, solving, etc. The notation is
designed to emphasize the roles of different kinds of mathematical objects—
variables, functions, parameters, data—without unnecessarily turning one
into another. For example, the derivative of a function in mosaic, as in
mathematics, is itself a function. The result of fitting a functional form to
data is similarly a function, not a set of numerical coefficients.

Goals of mosaic for Calculus

The mosaic calculus features were developed to support a calculus course
with these goals:

e introduce the operations and applications of differentiation and integra-
tion (which is what calculus is about);

e provide students with the skills needed to construct and interpret use-
ful models that can apply infer alia to biology, chemistry, physics, and
€Cconomics;

e familiarize students with the basics of functions of multiple variables;
e give students computational skills that apply outside of calculus; and

e prepare students for the statistical interpretation of data and models
relating to data.

These goals are very closely related to the objectives stated by the Mathe-
matical Association of Americainits series of reports on Curriculum Reform
and the First Two Years [Ganter and Barker 2004]. As such, even though
they may differ from the goals of a typical calculus class, they are likely a
good set of goals to aspire to in most settings.

We begin by introducing the variety of ways to describe mathemati-
cal functions in mosaic. In addition to the usual algebraic formula func-
tions there are functions based on data—fitted functions, interpolators, and
smoothers—and generic, smooth, wavy functions. Following giving the
mosaic notation for graphing functions, we introduce the mosaic differenti-
ation and anti-differentiation functions, which provide both symbolic and
numerical capabilities. We then show how to use mosaic to solve differential
equations.

We address some questions that arise when constructing functions from
data, and we comment on the links between calculus and algebra when
seen from a modeling perspective.

Functions and Notation

Functions, the transformation of an input to an output, are the building
blocks of modeling. A common and accepted notation for calculus students
is exemplified by f(z) = ma + b. In standard R syntax, f () can be defined
as

> f <- function(x) { m*x + b }
We refer to the function as f(), where the empty parentheses are merely

a typographical reminder that f is a function and not some other sort of
object such as a number or a table of data.

To use this syntax, students need to learn how computer notation for
arithmetic differs from algebraic notation: m*x + b rather than ma + b.
This isn’t hard, although it does take some practice. Assignment and nam-
ing mustalso be taught. Far from being a distraction, these necessitiesarean
important component of doing technical computing and transfer to future
work, e.g., in statistics. It's also helpful to remind students that functions
don’t have to be named f, g, and h, but can have more descriptive names,
such as 02_uptake.

Variables and Parameters

In using a function like £(), a very real problem is the meaning of m
and b. The convention, which students somehow pick up, is that letters
such as a, b, ¢, and m are fixed parameters, while z, y, and z are variables.
This convention dates back at least to Newton [1736]. But how to assign
numerical values to parameters like m and b?

Mosaic gives a straightforward notation to distinguish between variables
and parameters, while providing a sensible way to assign specific values to
parameters. With mosaic, the function £ () can be defined using makeFun ():

> library (mosaic)
> f <- makeFun (m * x + b ~ x)

The command, library (mosaic) loads the mosaic package, making the
mosaic functions available to the user. (To be able to loaded, a package must
first be installed on the user’s computer. Installation can be accomplished
with the command install.packages ("mosaic"). Installation need only
be done once, but loading must be done for each session.)

In computing terms, £ () is an ordinary R object. You can examine any
object by using its name as a command:

> f

function (x, m, b)
m*x + Db

When evaluating £ (), you need to give values not just to the indepen-
dent variables (x here), but to the parameters as well. This is done using
the standard named-argument syntax in R:

>f (x=2,m=3.5, b=10)

[1] 17

Typically, you assign values to the symbolic parameters when the function
is created:

Ry e e _——

> f <- makeFun (m*x + b™x, m = 3.5, b = 10)

Doing so allows the function to be used as if the only input were x, while
allowing the roles of the parameters to be explicit and self-documenting
and enabling the values of the parameters to be changed later.

>f (x=2)

[1] 17

A function can have more than one input variable. To identify symbolic
quantities as input variables, list them to the right of the formula tilde:

>g <~ makeFun (A * x * cos(pi * x *xy) " x +y, A=3)
> g

function (x, y, A = 3)
A * x * cos(pi * x * y)

Other symbolic quantities in the expression to the left of the tilde are
treated as “parameters.” The only operational difference between an input
variable and a parameter involves warning the user whenever a parameter
is not given a default value . For example, the following two functions are
equivalent except for the warning generated in making the second one:

> gl <- makeFun (A *x x * cos(pi * x *y) " x +y + A)
> g2 <-makeFun (A * x * cos(pi * x *y) ~ x +7y)

It is entirely a matter of style whether to include a symbolic quantity
such as A as a “parameter” or as an “input variable.” The warning message
encourages a style where parameters are assigned default values. (The
symbol pi is handled specially; it's always treated as the number 7 and
never as a parameter.)

In constructing a function, the order of the input variables and param-
eters is more or less arbitrary:

e Quantities identified as input variables, by being on the left side of the
tilde, appear first on its right-hand side, listed in the same order.

e Parameters are listed after the variables, in no particular order.

Whenyou “manufacture” anew function—forinstance, by differentiation—
the order of variables in the new function may be different from that in the
parent function.

In evaluating functions with multiple inputs, it's good practice to use
the variable names to identify which input is which:

>glx=1,y=2)

f11 3

Using makeFun () to define functions has the following advantages for
introductory calculus students:

e The notation highlights the distinction between parameters and inputs
to functions.

e Inputs are distinguished explicitly, reflecting the distinction between pa-
rameters and inputs; but parameter values too can be changed.

e R’s formula syntax is introduced early and in a fundamental way. The
mosaic package builds on this to enhance functionality while maintaining
a common theme. In addition, the notation sets students up for a natural
transition to functions of multiple variables.

Functions from Data

Traditionally, calculus instruction has emphasized functions that can be
described by an algebraic formula. In modeling, however, functions often
stem from data. Mosaic provides a variety of ways to construct functions
from data: interpolators, smoothers, and linear and nonlinear fitted func-
tions.

Interpolating Functions

Interpolating functions connect data points. Different interpolating
functions have differing properties of smoothness, monotonicity, endpoints,
etc., which can be important in modeling. Mosaic implements several in-
terpolation methods for functions of one variable.

To illustrate, we present some data from a classroom example intended
to illustrate the measurement of flow using derivatives. Water was poured
out of a bottle into a cup set on a scale. Every three seconds, a student read
off the digital reading from the scale, in grams. Thus, the data indicate the
mass of the water in the cup.

> Water <- data.frame (
mass = c(57,76,105,147,181,207,227,231,231,231),
time c(0, 3, 6, 9, 12, 15, 18, 21, 24, 27))

Plotting the data can be done with mosaic, which employs R’s lattice
graphics (an implementation of trellis graphics) [Sarkar n.d.].

Of course, the mass in the cup varied continuously with time. It's just
the recorded data that are discrete. The mosaic spliner () function creates
a cubic-spline interpolant that connects the measured data:

> waterMass <- spliner (mass ~ time, data = Water)

Following the notation for functions in mosaic, the formula mass ~ time
indicates that time is the input and mass is the output. When time matches
one of the cases in the Water data, the output is the corresponding value of
mass from that data.

> waterMass (time = ¢(0,3,6))

(11 57 76 105

At intermediate values of time, the function takes on interpolated values:
> waterMass (time = c(0, 0.5, 1, 1.5, 2, 2.5))

[1] 57.00000 59.71408 62.59067 65.64367 68.88697 72.33445

Like any other smooth function, waterMass() can be plotted (Figure 1),
differentiated, integrated, etc.

L] 1]] 1 1

o a— o
200 — i~
- 7
g 150 — /ﬂ' L
€ Y
/
S
/
- 7 B
100 /K
50 4~ -
I T I T]]
0 5 10 15 20 25

time
Figure 1. The water-pouring data and a smooth interpolator.
Mosaic provides other interpolating functions. For situations that de-

mand monotonicity (remember, the water was being poured into the cup,
not spilling or draining out), monotonic, smooth splines can be created

> monoWaterFun <- spliner (mass ~ time, data = Water,
monotonic = TRUE)

If smoothness isn’t important, the straight-line connector might be an
appropriate interpolant:

> lineWaterFun <- connector (mass ~ time, data = Water)

Smoothers

Interpolating functions “connect the dots.” In contrast, a smoother is a
function that follows general trends of data. Unlike an interpolating func-
tion, a smoother need not replicate the data exactly. To illustrate, consider
a moderate-sized data set CPS85 that gives hourly wage and demographic
data for 534 people in 1985. (CPS85 is in the mosaicData package available
through CRAN, the Comprehensive R Archive Network [2015].)

> library (mosaicData)
> data (CPS85)

There is no definite relationship between wage and age, but there are
general trends, as indicated in Figure 2.

i 1 L | 1

0

40 - =

wage

T T T T T
20 30 40 50 60

age

Figure 2. The CPS85 data for wage and age plotted along with a smoother function.

Smoothers can construct functions of more than one variable. For in-
stance, wageModel below is a functional representation of the relationship
between wage, age, and education. The function is graphed in Figure 3.

> wageModel <- smoother (wage ~ age + educ, span = 1.0,
data = CPS85)

Fitted Functions

R has powerful facilities for fitting parametric functions to data. Two
of the most wide used parametric functions result from linear and logistic
fitting. These are carried out with the standard R1m() and glm () functions.

B T [ot antar 't i gk g 2 b i

educ

—

T T T T
25 30 35 40 45

age

Figure 3. A smoother modeling the relationship between wage and age and education.

The mosaic function makeFun () takes the output of 1m() (linear models),
glm() (generalized linear models), ornls () (nonlinear least squares), and
packages it up into a model function. For instance, we have:

> wageModellLinear <- 1lm (log(wage) ~

age + educ + age:educ + 1, data = CPS85)
> wageFunlLinear <- makeFun (wageModelLinear)
> wageFunLinear (age = 55, educ = 12)

1
2.187433

In addition to applying makeFun () to models produced using the stan-
dard statistical modeling functions 1m(), glm(), and nls(), mosaic also
provides fitModel() and fitSpline(). These fit nonlinear and spline
models and return the model as a function.

e Thesplinesused by fitSpline () are notinterpolating splinesbut splines
chosen by the method of least squares. In typical applications, one sets
the number of knots (points where the piecewise polynomial function is
“stitched together”).

¢ The command fitModel () isroughly equivalent to first fitting the model
with nl1s () and then applying makeFun(); but the command provides
an easier syntax for setting starting points for the least-squares search
algorithm.

Among other things, fitModel enables students to refine eyeballed fits
todata. Forexample, here’s an exponential model fitted to the CoolingWater

data. From Figure 4, it's easy to see that the exponential “half-life” is ap-
proximately 30 minutes and the asymptotic temperature is about 30°C, so
these can be used as starting guesses.

1
100 4 § 5
&

80 -

temp

60 -

40 -

0 50 100 150 200
time

Figure 4. An exponential model fitted to the CoolingWater data with fitModel ().

> waterCoolingMod <- fitModel(temp ~ A + B * exp(-k * time),
start = list (A = 30, k = 1log(2)/30),
data = CoolingWater)

The function returned by fitModel () shows the specific numerical val-
ues of the parameters:

> waterCoolingMod

function (time, ..., transform = identity)
return (transform (predict (model,
newdata = data.frame(time = time), ...)))

<environment: 0x100d537c0>
attr(,"coefficients")

A k B
27.00447664 0.02096445 62.13547142
attr(,"class")

[1] "nlsfunction" "function"

As a rule, starting guesses for linear parameters don’t need to be pro-
vided. For complicated models, the fitting process may fail to converge
unless the starting guess is good. Commonly encountered examples of non-
linear parameters include the exponential decay constant & in the above,
and the period for a sine wave.

Sketchy Functions

In teaching, it’s helpful to have a set of functions that can be employed to
illustrate various concepts. Sometimes, all that’s needed is a smooth func-
tion that displays some ups and downs and has one or two local maxima
or minima. The rfun () function will generate such functions “at random.”
Figure 5 shows some examples. An optional random seed provides a re-
producible function that can be selected by an instructor.

15 \ -
/ \
10 / 2\ -
// i '..I
5+ =
z I
0 L
N Pi st
\ ___,/J
_5 — , . -
-10 =
T T T S T
—4 -2 0 2 4

X

Figure 5. Three randomly generated smooth functions with local maxima and minima. g() and
h() are shown with dashed and dotted curves, respectively.

> f <- rfun (~ x, seed = 345)
>g<-rfun (7 x)
>h <- rfun (~ x)

These random functions are particularly helpful to develop intuition
about functions of two variables, since they are readily interpreted as a
landscape. For instance, Figure 6 shows a round hill adjacent to a crescent-
shaped lake.

Graphics

Functions generated by mosaic can be evaluated and plotted using any
of the R graphics systems; but to simplify graphing functions of one or
two variables, mosaic provides plotFun (). This one function handles three
different formats of graph:

o the standard line graph of a function of one variable,

-2

Figure 6. A “sketchy” function of two variables.
>f <~ rfun (~ x + y, seed = 345)

e a contour plot of a function of two variables, or
e a surface plot of a function of two variables.

The plotFun() interface is similar to that of makeFun (). The variables
to the right of ~ set the independent axes plotting variables. The plotting
domain can be specified by a 1im argument whose name is constructed
to be prefaced by the variable being set. For example, in Figure 7 is a
conventional line plot of a function of ¢ and in Figure 8 is a contour plot of
two variables.

Functions of two variables can be plotted as pseudo-3D surface plots by
specifying the option surface = TRUE. Typically, surface plots are hard to
interpret, but they are useful in teaching students how to interpret contour
plots.

To simplify overlaying plots, plotFun () has an add argument to control
whether to make a new plot or overlay an old one. Similarly, there is an
plotPoints() function that works like the standard lattice scatterplotter,
xyplot (), but knows about add.

For instance, Figure 5 (p. 33), which shows three “sketchy” functions, is
made like this:

> plotFun(f(x) ~ x, x.lim = range(-5,5), ylim = c(~-15,20))
> plotFun(g(x) ~ x, add = TRUE, col = ’red’, 1ty = 2)
> plotFun(h(x) ~ x, add = TRUE, col = ’darkgreen’, lty = 3)

The plotPoints () function is useful for comparing data to functions.
For example, Figure 9 shows the model function wageModel () for wage

f
T °7/ \ i
rc:‘x 4~ I B
S ! \
% 24/ \ -
27 /"
* 04 \ / _/_
3 /
(]
< 27 \ / i
N/
-4+ N L
T T T 1
2 4 6 8

Figure 7. Conventional line plot.
> plotFun (A * exp(k * t) * sin(2 * pi * t / P) ~ t,
t.lim = range(0,10),
k=-0.3, A=10, P=4)

L I}
-0.05 5 -
-0.10 t I -
=M. o
x 015 . "1 -
.-‘}_“_
] .
-0.20 -
-0.25 L
<4
4 -
2 4 6 8

Figure 8. Contour plot of two variables.
> plotFun (A * exp(k * t) * sin(2 * pi * t / P) ~ t + k,

t.lim = range(0,10), k.lim = range(-0.3,0.0),
A=10, P =4)

as a function of age and education along with the age and education data
from CPS85.

Wage as a function of age and education

1 ! 1 L
: T o

1
o

o= nn g

10

educ

25 30 35 40 45

age

Figure 9. The educ vs. age data added to the plot of wageModel).

> plotFun(wageModel (age = age, educ = educ) ~ age + educ,
age.lim = range(20,50),
educ.lim = range(5,14),
main = ’Wage as a function of age and education’)
> plotPoints(educ ~ age, data = CPS85, add = TRUE)

Differentiation and Antidifferentiation

Differentiation and antidifferentiation are provided by two mosaic func-
tions: D() and antiD(). Both of these are set up in the same way as
makeFun(): They take a ~ expression as input and produce a function as
output. Here is an example:

>antiD (1 / (a*x+Db*xy) " x)

function (x, C =0, a, b, y)
1/(a) * log(((a * x + b *y))) +C

Default values of parameters are retained in the functions created by
D() and antiD(), as we demonstrate:

> antiD (sqrt(b + a * x) “ x, a =7, b =20)

function (x, a =7, b =20, C = 0)
1/(a) * 2/3 * sqrt(b + a * x)"3 + C

Such algebraic forms are a staple of introductory calculus courses, but
they are not the only sort of functions used in modeling; and we want
to apply the operations of differentiation and antidifferentiation to those,
too. For example, recall the waterMass () function constructed by a spline
interpolation through discrete data shown in Figure 1; waterMass () gives
the mass of water accumulated in a glass over time as water is poured into
it. Suppose you want to know the flow of water. This will be the derivative
of waterMass () with respect to time:

waterFlow(t)

Figure 10. The rate of flow of water into a glass calculated as the derivative of the spline interpo-
lating function waterMass ().

> waterFlow <- D (waterMass(t) ~ t)
> plotFun(waterFlow(t) ~ t, t.lim = range(0,25))

Being able to differentiate and antidifferentiate functions that do not
necessarily have an “approachable” algebraic expression can be useful for
demonstrating the properties of differentiation and antidifferentiation. For
instance, the derivative of an antiderivative is the original function, as stu-
dents can see for themselves by working with a “sketchy” function such
as the following, with steps exhibited in Figure 11, for which we have the
commands:
> f <— rfun (© x, seed = 98)
> F <- antiD (£(x) ~ x
>g<-D(F® ~ x)

)

v

plotFun(£(x)7x, x.lim

c(-5,5))

f(x)
’/

-5 -

\'%

c(-5,5))

A L] I Il

54 J/ X L

01 / L i

~15 = -

Fix)

\"4

plotFun(g(x) ~ x, x.lim = c(-5,5))

9(x)

-5 =

T T T
-4 -2 0 2 4

Figure 11. Operating ona “sketchy” function to demonstrate that the derivative of an antiderivative
is the original function.

Of course, the opposite is not always true: The anti-derivative of a
derivative is not necessarily the same as the original function, since they
can differ by a constant (Figure 12).

] 1 1 1]

d-—'—"-‘d_/._ _H-\‘

|

-5

-4 -2 0 2 4
X

Figure 12. The antiderivative of the derivative of f(z) is not necessarily the same as f{z).

>df <- D (£(x) ~ x)
> DF <- antiD (df(x) ~ x)
> plotFun (£(x) ~ x,
x.1lim = range(-5,5), ylim = c(-10,15), 1ty = 3)
> plotFun (DF(x) ~ x, add = TRUE)

A nice activity for novice modelers is estimating the capacity of traffic
on a road regulated by a traffic light [Banks 1998]. Students generally have
a good idea about the length of a car, the distance between cars stopped at
a light, and the delay between one car starting to move and the one behind
it moving. They claim that they don’t know how far a car will travel as
a function of time. But they will nod their heads when reminded that a
typical car accelerates from zero to 60 mph in 10 seconds. This suggests
the following model of car velocity as the car accelerates to the speed limit
(pmin() means “the lesser of two values”), with the functions shown in

Figure 13.

> car_velocity <- makeFun (pmin(speed_limit, (60/10)*t) ~ t,
speed_limit = 40)

Distance travelled is the antiderivative of speed:

] i ! i
40 — 1
P
f/
30 ; -
./
= A
G -
2 20 7 -
] e
38 2
10 S B
il
ra
0 i
¥ T T T
2 4 6 8
t
Figure 13a. the car_velocity () function.
1 1 1 i
250 2
Fd
200 pd -
. s
3 s
§ 150 p Ve W
[:]
i v i
3 A~
//
50 L i
0 - — K
T T T 1
2 4 & 8

Figure 13b. The anti-derivative of the car_velocity () function.

> car_distance <- antiD (car_velocity(t) ~ t)
> plotFun (car_distance(t) ~ t, t.lim = ¢(0,10))

Traditional introductory calculus deals with functions of a single vari-
able. In modeling-based calculus, it's appropriate to start students off with
functions of two variables. After all, models of genuine phenomena are
generally multivariate. The “sketchy” functions and the data-based func-
tions in mosaic provide a means for students to start working with two-
variable functions without any algebraic overhead. Partial derivatives pro-
vide an important way of interpreting such functions, answering as they
do the common question: How would the output change if one input were
changed with all the others held constant? (Working with partial change
invites another question: What happens if changing one input variable
causes a change in another input variable? The distinction between partial

ittt Windkideddd ittt it d i o

change and total change is an important concept in interpreting models (see
Kaplan [2011, Chapter 10]).

To illustrate how mosaic facilitates working with such concepts, consider
the example of prices of used cars. (This is a good object lesson in open-
ended modeling: What determines the price of a car?) Students can easily
collect data from used-car services on the Web. One such dataset is avail-
able at http://tiny.cc/mosaic/used-hondas.csv. This example will
work with those data. used-hondas . csv comprises 92 cars. Here's a short
excerpt:

Price Year Mileage Location Color Age
7977 2002 100979 St.Paul White 5

22988 2006 15075 Durham Black 1
17900 2006 29927 Durham Brown 1

Mosaic provides a read.file() function that can handle data in a vari-
ety of formats, including the widely used CSV (comma-separated values).

> hondas<-read.file("http://tiny.cc/mosaic/used-hondas.csv")

Here’s a simply constructed model of price as a function of both mileage
and age (see Figure 14).

7

20000 40000 60000 80000
m

Figure 14. Price of used cars as a function of both mileage and age.

> modl <- smoother (Price ~ Mileage + Age, data = hondas,
span = 1)
> plotFun (modl (Mileage = m, Age = a) " m + a,
m.lim = range(0,100000), a.lim = range(1,10))
> plotPoints(Age ~ Mileage, data = hondas, add = TRUE,
col = "white", pch = 20)

As expected, price goes down with age and mileage. (Note the para-
doxical increase in price for low-mileage cars as they age. A good object
lesson: It's dangerous to extrapolate a function far from the data used to
construct it!)

How do prices change for cars as mileage increases, holding age con-
stant? See Figure 15.

] 1 1

o006 /—\\\m_
)
n
[

g -0.10 -
[}
o
[
@

S 012+ -
()
o
[u]
2

2 o014 =
o)

B T]] T B

2404 4e+04 6e+04 8e+04
Mileage

Figure 15. Loss of value per mile as a function of total mileage, for cars 3 years old.

> byMileage <- D(modl (Mileage = Mileage, Age = Age)
Mileage)
> plotFun(byMileage (Mileage, Age = 3) ~ Mileage,
Mileage.lim = range(0,100000))

Low mileage cars lose value at about 14 cents/mile, but high—mileage
cars lose value at about 8 cents/mile.

A similar analysis can be performed for change in price as a function of
age.

Even on a function such as a smoother, the mixed partial derivatives
can be computed. How does the effect of age on price change as mileage
increase?

> mixedl <- D (modl (Mileage = Mileage, Age = Age) ~
Age + Mileage)

Or inversely, how does the effect of mileage on price change as a car
ages?

Oy e

> mixed2 <- D (modl (Mileage = Mileage, Age = Age) ~
Mileage + Age)

Of course, these two different-sounding questions have the same an-
swer:

> mixedl (Mileage = 50000, Age = 5)
1

-0.01236913

> mixed2 (Mileage = 50000, Age = 5)
1

-0.01236913

Differential Equations

A general problem-solving strategy is “divide and conquer” or, as
George Polya [1945] phrased it, “decomposing and recombining.” Cal-
culus provides important methods for implementing divide and conquer.
For instance, complex areas are divided into simple rectangles, whose areas
are easily calculated and recombined. Volumes are decomposed into areas
and then recombined.

For the modeler, divide and conquer often takes the form of an dif-
ferential equation. The model consists of an instantaneous “state” and a
formulation of how, at any state, the state will change over a very small
interval of time. The differential equation decomposes the system into usu-
ally simple instantaneous relationships of this form. The simple systems are
easily solved. The recombining phase sequences the simple, short-duration
solutions into an overall, often complicated, long-duration solution.

For example, consider a diver jumping from a diving board. The overall
motion is complicated: first up, then slowing near the peak, then falling,
then hitting the water, which both slows the diver’s downward speed and
provides bouyancy to lift the diver to the surface. The “state” of the diver
in a simple model is the vertical position y and the vertical velocity v. A
differential equation model specifies how the instantaneous change of state
depends on the state itself, that is, how dy/dt and dv/dt each depend on
the state y and v.

Animportant definition for any modeler to know: Velocity is the change
in state of position. One way to write this is dy /dt = v. A shorthand for
this in R notation is

dy ~ v.

The instantaneous change in velocity is more complicated. A standard,
simple model is dy/dt = —g, where g is the acceleration due to gravity on
the Earth’s surface (where most diving takes place!): g ~ 9.8 m/s”. This
model will be close to reality in the air; but once the diver hits the water,
there are two new important terms that come into play: water resistance
to the diver’s motion, and the bouyancy of the diver. Model bouyancy in
the water as a constant upward force compensating gravity: B —g 2 0.
Water resistance is often modeled as proportional to velocity squared in a
direction opposite to velocity. The instantaneous change of velocity can be
modeled as

dv ~ ifelse(y > 0,
-g, # above the water
B-g-r * sign(v) * v72 # in the water
)

To integrate this pair of differential equations is to recombine the rela-
tively simple dy and dv into overall functions of time. The mosaic function
integrateODE() carries this out:

Height (m)

2 : -

Figure 16. A solution to the diving problem.
> diveFloat <-

integrateODE(
dy ~ v,
dv = ifelse(y > O,

-g,

B-g-r * sign(v) * v72),
v=1, y=5, # initial conditions
tdur = 10, # duration of solufion
g =9.8, B=10.8, r =1 # parameters
)

plotFun (diveFloat$y(t) ~ t,
t.1lim = range(0,10),
ylab = "Height (m)")

As seen in Figure 16, the diver resurfaces after slightly more than 5
seconds, and then bobs in the water. One can adjust the parameters for
buoyancy B and drag r to try to match observed trajectories.

Calculus and Data

The mosaic package was developed to support a particular goal: uniting
modeling, statistics, computation, and calculus into a coherent and useful
whole.

In some ways, “mainstream calculus” and data-analysis/statistics are
conflicting paradigms. Mainstream calculus emphasizes exact answers and
(often) proof. Statistics is about variation and modeling. Calculus is de-
ductive, statistics is inductive.

Some of the conflicts can be seen in approaches to constructing approxi-
mations to functions. Mainstream calculus introduces Taylor series: a way
of constructing a polynomial approximation to an algebraically specified
function that matches first, second, third, and higher derivatives at a par-
ticular point. Data analysts, however, know that estimating a second or
third derivative from data is perilous and unreliable. They also know that
high-order polynomials have very poor modeling properties; for instance,
extrapolation of constructed polynomialsis dangerous. Taylor polynomials
match functions exactly at one point, data analysts look for good approxi-
mations over a region. ‘

Yet there are important links between calculus and statistics. A distinc-
tive feature of mosaic is the connection between data and calculus. Mosaic
provides a tight interface to use calculus as a tool to work with smoothers,
interpolators, and fitted parametric functions. Once constructed, the shapes
of derived-from-data functions can be interpreted with calculus techniques
such as partial differentiation or integration over a region.

Calculus tools on their own, however, cannot address a critical question:
How to evaluate the strength of evidence that data provide to support a
claim of any specific feature of a function derived from data? The techniques
of statistics are important here and often need little specialized knowledge.

Consider, for example, the model of wage as a function of age and edu-
cation introduced earlier based on a smoother (see Figure 3 on p. 31).

> wageModel <- smoother (wage age + educ, span

data

1.0,
CPS85)

One question a data ahalyst might want to address from these data and

the model is how wage changes with age. Typically, a person’s education
is set at the time he or she starts work, so a relevant quantity is the partial
derivative of wage with respect to age (holding education constant). For
instance, in Figure 17 we show the result for workers with 12 years of
education.

0.20 \ N

\\ _

0.10 - =

= age)

0.05 u

0.00 \\ L

~

wageGrowthByAge(age

T T T T T
30 35 40 45 50

age

Figure 17. Wage growth by age for workers with 12 years of education.

> wageGrowthByAge <- D (wageModel (age = age, educ = educ) ~
age, educ = 12)
> plotFun (wageGrowthByAge (age = age) ~ age,
age.lim = range(25,55))

The growth of wage appears to be positive, but the growth declines with
age and even becomes negative after roughly 45 years of age. At age 55,
the hourly wage is declining 3.6 cents per year.

> wageGrowthByAge (age = 55)

1
-0.03609313

How strong is the evidence for this wage decline? One way to answer
this question is to simulate the variation in data that can be expected to be
encountered if the study had been done with a new set of data. This can be
done using a technique called “resampling” where new random samples of
cases are drawn from the original data. The following R/ mosaic statements
fit the wage model to the resampled data, construct the partial derivative of
wage with respect to age at age 55, and overlay it on the original plot. This
is repeated 100 times to get an idea of the variation that might be anticipated
if new data were collected.

ST EEEEETES R e iR e -r

Density

rd b

\
0 s OB BRI T S0 ® |-

T T T T T T T
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10

result

Figure 18. Dot plot and density plot for 100 resamples of partial derivative of wage with respect
to age at age 55.

> trials <-
do(100) *
{
wageModelResamp <- smoother (wage ~ age + educ,
span = 1.0,
data = resample(CPS85))
wageGrowthResamp <- D (wageModelResamp (age = age,
educ = educ) ~ age, educ = 12)
data.frame (result = wageGrowthResamp (age = 55))

> densityplot(~ result, data = trials)

Algebra, Calculus, and Modeling-Based
Calculus

We've tried to make the case that calculus is useful as a strategy for fram-
ing models (decomposition and recombination) as well as for interpreting
models. We call this “modeling-based calculus.” Yet introductory calculus
is typically about performing algebraic operations and it's conventionally
thought that students need a solid grounding in algebra and trigonometry
before tackling calculus. Indeed, almost all of the secondary-school mathe-
matics curriculum is devoted to preparing for calculus. The acronym often
used to describe the secondary-school mathematics curriculum is GATC:
Geometry, Algebra, Trigonometry, and Calculus. Until just a half-century

ago, calculus was an advanced topic first encountered in the university.
Trigonometry was a practical subject, useful for navigation and surveying
and design. Geometry also related to design and construction; it served as
well as an introduction to proof. Calculus was a filter, helping to sort out
which students were deemed suited for continuing studies in science and
engineering and even medicine.

Nowadays, calculus is widely taught in high-school rather than univer-
sity. Trigonometry, having lost its clientelle of surveyers and navigators,
has become an algebraic prelude to calculus. Indeed, the goal of GAT has
become C — it’s all a preparation for doing calculus.

_ There is a broad dissatisfaction. Instructors fret that students are not
prepared for the calculus they teach. Students, too, are unhappy:

Students do not see the connections between mathematics and their
chosen disciplines; instead, they leave mathematics courses with a set
of skills that they are unable to apply in non-routine settings and whose
importance to their future careers is not appreciated. Indeed, the
mathematics many students are taught often is not the most relevant
to their chosen fields. [Ganter and Barker, p. 1]

A study at Arizona State University found that “Even among those who
earned an A in precalculus, 43% switched majors rather than taking calcu-
lus” [Bressoud 2010].

Accept, for the sake of argument, that calculus is important, or at least
is potentially important if students are brought to relate calculus concepts
to inform their understanding of the world.

Is algebra helpful for most students who study it? It's not so much the
direct applications. The nursing students who are examined in completing
the square will never use it or any form of factoring in their careers. Under-
wood Dudley wrote, “I keep looking for the uses of algebra in jobs, but I
keep being disappointed. To be more accurate, I used to keep looking until
I became convinced that there were essentially none” [Dudley 2010, 610].

There was a time when algebra was essential to calculus, when perform-
ing calculus relied on algebraic manipulation. The use of the past tense may
surprise many readers. The way calculus is taught, algebra is still essential
to teaching calculus. Most people who study calculus think of the opera-
tions in algebraic terms. For the 25 years or more, however, there have been
easily accessible numerical approaches to calculus problems.

The numerical approaches are rarely emphasized in introductory cal-
culus. There are both good and bad reasons for this lack of emphasis on
numerics. Tradition and aesthetics both play a role. The preference for exact
solutions of algebra rather than the approximations of numerics is under-
standable. Possibly also importantis the lack of a computational skill set for
students and instructors; very few instructors and almost no high-school
students learn about technical computing in a way that would make it eas-
ier for them to do numerical calculus rather than algebraic calculus. (Here’s

a test for instructors: In some computer language that you know, how do
you write a computer function that will return a computer function that
provides even a rough-and-ready approximation to the derivative of an
arbitrary mathematical function?)

There are virtues to teaching calculus using numerics rather than alge-
bra. Approximation is important and should be a focus of courses such as
calculus. As John Tukey said, “Far better an approximate answer to the
right question, which is often vague, than an exact answer to the wrong
question, which can always be made precise.” And computational skill is
important. Indeed, it can be one of the most useful outcomes of a calculus
course.

In terms of the basic calculus operations themselves, the need to compute
derivatives and integrals using algebra-based algorithms limits the sorts of
functions that can be employed in calculus. Students and textbooks have
to stay on a narrow track which allows the operations to be successfully
performed. That's why there are so many calculus optimization problems
that amount to differentiating a global cubic and solving a quadratic. (When
was the last time you used a global cubic to represent something in the
real world?) There’s little room for realism, innovation, and creativity in
modeling. Indeed, so much energy and time is needed for algebra, that is
conventional for functions of multiple variables to be deferred to a third
semester of calculus, a level reached by only a small fraction of students
who will use data intensively in their careers.

With time, it’s likely that more symbolic capabilities will be picked up in
the mosaic package. (The Ryacas package [Goedman et al. 2014] already
provides an R interface to a computer algebra system.) This will speed
up some computations, add precision, and be gratifying to those used to
algebraic expressions. Butit will not fundamentally change the pedagogical
issues and the desirability of applying the operations of calculus to functions
that often may not be susceptible to symbolic calculation.

Acknowledgments

The mosaic package is one of the initiatives of Project MOSAIC 92015],
an NSF-sponsored project (NSF DUE 0920350) that aims to make stronger
connections among modeling, statistics, computation, and calculus in the
undergraduate curriculum.

Editor’s Note

Kaplan [2013] offers a further introduction to doing calculus in R, fea-
turing greater detail and more examples.

References

Banks, Robert B. 1998, Towing Icebergs, Falling Dominoes, and Other Adven-
tures in Applied Mathematics. Princeton, NJ: Princeton University Press.

Bressoud, David M. 2010. The problem of persistence. http://www.maa.
org/external_archive/columns/launchings/launchings_01_10.
html.

Comprehensive R Archive Network (CRAN). 2015.
http://cran.r-project.org/ .

Dudley, Underwood. 2010. What is mathematics for? Notices of the Ameri-
can Mathematical Society 57 (5) (May 2010): 608—613.

Ganter, Susan L., and William Barker (eds.). 2004. The Curriculum Foun-
dations Project: Voices of the Partner Disciplines. http://www.maa.org/
programs/faculty-and-departments/curriculum-department-
guidelines-recommendations/crafty/curriculum-renewal .
Washington, DC: Mathematical Association of America.

Goedman, Rob, Gabor Grothendieck, Seren Hojsgaard, and Ayal Pinkus.
2014. Ryacas—An R interface to the yacas computer algebra system.
http://cran.r-project.org/web/packages/Ryacas/vignettes/
Ryacas.pdf.

Kaplan, Daniel T. 2011. Statistical Modeling: A Fresh Approach. 2nd ed.
Project Mosaic.

. 2013. Start R in Calculus. Project Mosaic.

Newton, Isaac. 1736. The Method of Fluxions and Infinite Series: With Its
Application to the Geometry of Curve-lines. Transl. (from Latin) by John
Colson. London: Henry Woodfall. https://archive.org/details/
methodoffluxionsOOnewt .

Polya, George. 1945. How to Solve It: A New Aspect of Mathematical Method.
Princeton, NJ: Princeton University Press. 1957. 2nd ed. New York:
Doubleday. 2004. Reprinted with foreword by John Conway. Princeton,
NJ: Princeton University Press. 2009. Reprinted with foreword by Sam
Sloan. San Rafael, CA: Ishi Press.

Project Mosaic: Modeling, Statistics, Calculus, and Computation. http:
//mosaic-web.org/ .

Pruim, Randall. 2011. A mosaic sampler.
http://www.calvin.edu/ rpruim/talks/MosaicLightning/useR-
2011/LightningMosaic.pdf.

Sarkar, Deepayan. n.d. Getting started with lattice graphics.
http://lattice.r-forge.r-project.org/Vignettes/src/
lattice-intro/lattice-intro.pdf .

Y R e T w e

About the Authors

Danny Kaplan specializes in applying mathematics,
including statistics and computation, to problems in the
sciences. His professional training is in biomedical engi-
neering, and he came to Macalester from the physiology
department at McGill Medical School. He has written
textbooks in nonlinear dynamics (chaos theory) applied

g to biology and medicine, in scientific computation, and
most recently in statistical modeling. He won Macalester’s 2006 Excellence
in Teaching Award for creating an introductory quantitative curriculum
consisting of calculus and statistics courses that are among the most heavily
subscribed at the college. Prof. Kaplan also participatesin Macalester’s pub-
lic health concentration, teaching an introductory course in epidemiology.
He has a B.A. (Physics) from Swarthmore College, an M.A. (Engineering-
Economic Systems) from Stanford, and a Ph.D. (Blomedlcal Physics) from
Harvard.

Cecylia Bocovich is a Ph.D. student
in Computer Science at the University of
Waterloo in Ontario, Canada, where she
is a member of the Cryptography, Secu-
rity, and Privacy (CrySP) lab and the Cen-
tre for Applied Cryptographic Research.
She received a master’s in Mathematics
from the University of Waterloo and a
Bachelor of Artsin Mathematics and Com-
puter Science from Macalester College.

Randall Pruim is a Professor of Mathematics and
Statistics and Adjunct Professor of Computer Science at
Calvin College in Grand Rapids, MI. He received a B.A.
in German and Mathematics from Calvin College and
a Ph.D. from the University of Wisconsin. His research
interests have shifted over the years from mathematical
logic, to computational complexity, to computational
biostatistics. He is co-author (with Uwe Shéning) of Gems of Theoretical
Computer Science, translator of Complexity Theory by Ingo Wegener, and au-
thor of Foundations and Applications of Statistics: An Introduction Using R
(American Mathematical Society, 2011). He is past chair of the Mathemati-
cal Association of America’s Special Interest Group for Statistics Education
and a member of the MAA / ASA Joint Committee on Undergraduate Statis-
tics. He is co-author and maintainer of the mosaic package.

