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Computing and Introductory Statistics

Daniel T. Kaplan
Macalester College

1. INTRODUCTION

Here’s a chicken-and-egg question: To learn introductory statistics effectively, what should
our students know about computing?

We might claim, with reason, that we can already teach statistics effectively. We know that
we can do this with the students and equipment that we already have and with the computer
skills that our students already possess or can pick up in our statistics class.

On the other hand, if our students knew more about computing how might that change
our conception of what it means to learn statistics effectively? Rather than asking what
computation is needed to support the statistics that we teach, perhaps we should ask what
computation is needed to support the statistics that we want to teach.

The last two decades are filled with examples where institutions adapted computers to what
they were already doing and missed an opportunity to do much more. In the 1980s and 1990s
librarians adapted computers to automate their title/author/subject card catalogs. Now,
libraries have largely been supplanted by comprehensive, full-text searches and the electronic
delivery and national archiving of content.

The 1980s music industry embraced a CD format which was designed to provide a physi-
cally compact version of the standard 30-minute “long-playing” (LP) album. They ignored
available compression algorithms that would have expanded the capacity much beyond their
LP conception. Now CD sales are collapsing while children carry around entire collections
of music in their pockets, using devices such as the iPod based on the ideas of “search” and
“playlist” rather than “album” and “shelf.”

Similarly, statistics educators have embraced the calculator and computer to teach content
that in the main would have been familiar in the 1970s.

A possible retort to that last statement points out that the statistics that was familiar in the
1970s is exactly what students, especially introductory college-level students, need to know.
That might be correct, but there are hints even within our present curriculum that we are
trying to push beyond what we have traditionally done and that a major obstacle to doing
this is what students don’t know about computation.
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2. WHAT WE DO NOW.

A well documented and readily available indicator of what we currently do in introductory
college-level statistics is the Advanced Placement statistics course. The AP test enables
students to get college credit for course taken in high school. The number of students taking
the AP statistics test has grown exponentially to about 100,000 in 2007; many more students
take the course without taking the test. In my opinion, this success is well deserved since the
AP curriculum is well designed for covering traditional topics. Here is what the AP Course
Description (College Board 2006) says about “the use of technology,”

Because the computer is central to what statisticians do, it is considered es-
sential for teaching the AP Statistics course. However, it is not yet possible for
students to have access to a computer during the AP Statistics Exam....

If a graphing calculator is used in the course, its computational capabilities
should include standard statistical univariate and bivariate summaries through
linear regression. Its graphical capabilities should include common univariate and
bivariate displays such as histograms, boxplots, and scatterplots. Students find
calculators where data are entered into a spreadsheet format particularly easy to
use. Ideally, students should have access to both computers and calculators for
work in and outside the classroom.

Immediately following the one-page discussion of computing technology in the AP Course
Description is the seven pages of formulas and probability tables that are made available to
test takers: regression slopes and intercepts, standard errors; normal, t, and χ2 distributions.

The College Board (2006) provides four sample syllabi for various ways of organizing the
course. All four of the example statistics syllabi offered by the College Board emphasize
the use of the graphing calculator. Computers, with software such as Minitab, JMP-Intro,
Fathom, or special-purpose applets, are used “secondarily” or for “occasional assignments.”

Perhaps unbeknownst to the College Board, most students are indeed bringing computers
to the AP test session. The graphing calculators that are allowed in the session have the
computational power of a full-fledged computer.

Computation has become ubiquitous. An illustration of this was given in a recent newspaper
article about toys (Marriot 2007).The article quoted Caleb Chung, the inventor of the Furby,
a popular talking toy from the late 1990s. Chung said, “The price of processing power has
dropped to the floor. I can buy the equivalent of an Apple II processor for a dime.”

What distinguishes the graphing calculator from the “computer” is not computational power
but the man-machine interface. Calculators have a low-resolution display and a slow-to-use
keypad. They use a rudamentary operator-stack command system: enter a number, press a
command, enter a number, press a command, and so on.

With this interface, students can use calculators work that involves the input of a dozen or
so numbers in each of two columns. This data format lends itself pretty well to the basic
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operations required in AP statistics: display a histogram, boxplot or scatter plot, or compute
a mean or standard deviation or straight-line Y versus X regression coefficients. So these
operations are what gets taught if you use a calculator. Or, more precisely, this is what gets
taught if you use a computer with an interface like a calculator.

An indication about what we would like to teach if we didn’t have the interface problem is
given by the AP sample syllabi. All four syllabi emphasize the use of the graphing calculator
up to the time of the actual exam. This makes sense, because the calculator is what is
available during the exam and a central goal of the AP course is to prepare students for the
exam. But after the exam is given there are a few weeks left in the academic year.

After the exam, three of the AP syllabi move on to topics not covered on the exam: multiple
regression and ANOVA. In every case, the calculator is no longer used for computational
support for these topics. Instead, a computer package is used: both JMP-intro and Minitab
are referred to in the sample AP statistics.

The computer, with its high resolution graphical display and random access spreadsheet grids,
is much better suited to lengthy, multivariate data sets and to operations that cannot easily
be specified with a button press, for example selection of a set of explanatory variables and a
response variable or plotting of residuals.

The AP Course Description gives additional rationale for using computers rather than calcu-
lators:

In addition to its use in data analysis, the computer facilitates the simulation
approach to probability that is emphasized in the AP Statistics course. Probabili-
ties of random events, probability distributions of random variables, and sampling
distributions of statistics can be studied conceptually, using simulation. This frees
the student and teacher from a narrow approach that depends on a few simple
probabilistic models (College Board 2006, p. 9).

As an example of what it might mean to study the sampling distributions of statistics at an
introductory level, I pose a problem drawn from the my experience in statistical consulting.
The US federal government audits its contractors against the possibility that they discrimi-
nate illegally in hiring. One bureau, the US Department of Labor Office of Federal Contract
Compliance Programs (OFCCP), describes how it calculates the statistical significance of an
observed difference in hiring rates, for example, “Female vs. Male Hires for Management
Trainee.” The OFCCP worksheet (US Department of Labor 1993) is reproduced in the Ap-
pendix, but it boils down to a formula.

Suppose there are n1 applicants from Group 1 of whom h1 are hired, and similarly n2 appli-
cants with h2 hires from group 2. Within each group, the probability of a random applicant
being hired can be estimated as p1 = h1/n1 and p2 = h2/n2. Overall, the probability of a
random applicant from either group being hired is p = (h1 + h2)/(n1 + n2). The OFCCP
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looks for a statistically significance difference between p1 and p2 using

σ =
|p1 − p2|√

1
n1

+ 1
n2

√
p(1− p)

. (1)

According to the OFCCP regulations, finding σ > 2 for any comparison of two groups will
subject the contractor to penalties and enforced corrective actions. (I have seen OFCCP
impose stiff penalties when 2.0 < σ < 2.1. The US Supreme Court (1977) has indicated that
“a fluctuation of more than two or three standard deviations would undercut the hypothesis
that decisions were being made randomly with respect to [a protected trait]” (Hazelwood
School District v United States 1977).

There are several aspects of the OFCCP formula and its application that might be interesting
to cover in an introductory statistics course: the denominator is a standard deviation of the
difference between two proportions under the hypothesis that hiring rate is the same for the
two groups; the observed difference in hiring rates is scaled by this standard deviation. The
σ > 2 threshold corresponds to a significance level of 5%.

Another interesting aspect of the OFCCP formula is that it is wrong. It does not describe the
sampling distribution of the difference in hiring rates in the situation to which it is applied.
There are two reasons for this: (1) hires made in Group 1 and Group 2 are not independent,
since the total number of hires is fixed; (2) OFCCP applies the formula to many sets of groups,
and finds a violation if any one of the comparisons produces σ > 2.

Clearly the formula for σ is not the end of the story. We need to have a way to teach effectively
why the formula is wrong and how a student might discover for him or herself that the formula
is wrong. Even more important, we need to teach students how they might communicate with
others about such issues. We prepare students for exams presumably because that helps them
to learn, but the true test is whether our students can apply their knowledge in an authentic
setting such as that provided by the OFCCP procedures.

3. THE “TYRANNY OF THE COMPUTABLE”

George Cobb (2005) provides a trenchant critique of the standard introductory course that
illustrates the self-reinforcing origins of the introductory curriculum:

Question: Why, then, is the t-test the centerpiece of the introductory statistics
curriculum?

Answer: The t-test is what scientists and social scientists use most often.

Question: Why does everyone use the t-test?

Answer: Because it’s the centerpiece of the introductory statistics curriculum.

Cobb argues that the “logic of inference” should be at the core of the introductory curriculum
and recommends that the permutation test, not the t-test, should be the“central paradigm for
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inference.” He points out that the t-test is so widely used because the computations involved
were easily performed in the days before computers. Cobb quotes Fisher: “[T]he statistician
does not carry out this very simple and very tedious process [of the permutation test], but
his conclusions have no justification beyond the fact that they agree with those which could
have been arrived at by this elementary method.”

Computer hardware makes performing the permutation test a simple matter. If, as Fisher
characterizes it, it is an “elementary method,” why is it not taught in introductory statistics?
The barriers (some of which are described by Duckworth and Stephenson (2002)) are not
fundamentally computational; providing the necessary capabilities to either calculators or
computers is straightforward. Instead, an important barrier relates to language or notation:
the way we describe things.

When we describe the t-test or a confidence interval, we are often describing an algorithm
whose individual steps can be presented in the algebraic or calculator notation familiar to
high-school students or as look-up instructions. For example, here are the steps in finding the
margin of error on a sample mean:

1. Find the sample mean: m = 1
N

∑N
i=1 xi.

2. Find the sample standard deviation: s =
√

1
N−1

∑N
i=1(xi −m)2.

3. Look up t? for 95% confidence in a table of the t-distribution with N − 1 degrees of
freedom.

4. The margin of error is ±t∗s/
√
N .

Steps 1, 2, and 4 involve arithmetic. Step 3 is a function evaluation. These are skills taught
extensively in high school.

The corresponding bootstrapped confidence interval is straightforward, but involves differ-
ent operations for which we have no standard algebraic or calculator notation: resample,
collection.

By analogy to the traditional Three Rs of elementary school (reading, writing, arithmetic),
Cobb (2007) lays out the “three Rs of inference”:

Randomize, Repeat, Reject.

We know how to support computationally a course that puts the t-test at the center, since
it involves computing means, standard deviations, and square roots: familiar stuff for a
calculator user. How do we support a Three-R course? None of these Rs are conveyed by
algebraic or calculator notation.

4. CODE IS BAD NOTATION

When we add a new procedure to a calculator or a statistics package, we write in a special
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language supported by that package. Such instructions are often called “code,” and for good
reason. Here is part of a macro written for Minitab to produce a bootstrapping confidence
interval on the sample mean (Stephenson 1993)):

OneMeanCI n Data CC nreps
Mconstant n CC cl cu Lower Upper nreps I
Mcolumn Data Bootmean Resample

DO I= 1:nreps
Sample n Data Resample;
replace.
Let Bootmean(I) = Mean(Resample)

ENDDO

An approach to the Three Rs that is based on notation like this is not likely to be compre-
hended by introductory statistics students. The macro is lengthy, complicated, and cryptic:
it’s computer code that mixes together irrelevant technical details of the Minitab macro lan-
guage — Mconstant, Mcolumn, Let — with the essential structure of bootstrapping.

Good notation reveals structure; bad notation obscures it. But no notation can be clear if you
haven’t learned to read it and haven’t learned the concepts that underlie it. Consider again
the Formula 1 used by the the US Federal government in detecting hiring discrimination:

σ =
|p1 − p2|√

1
n1

+ 1
n2

√
p(1− p)

.

We wouldn’t expect people who had never seen algebraic notation to understand this; why
would we expect people who have never studied computation to understand something like
the Minitab macro (which is not so nice notationally in any event)?

Although the algebraic notation of Formula 1 seems clear to those with good algebraic skills,
it is mysterious and imposing to most people. Given that students are not comfortable with
such notation, it forms a barrier to teaching statistics effectively. As an example of how far
people can go to avoid using algebraic notation, see Appendix A for the way the algorithm
behind Formula 1 is presented officially by the US Department of Labor (1993).

5. NOTATION AS A STARTING POINT

Let’s start by example with one possible notation to support the Three Rs.

Suppose we have a data set such as might be used in studying hiring patterns, a table that
gives various information about each person who applied for a job. The data have been
stored in an object called apps. Typing the name of an object after the prompt (>) causes
the object’s value to be printed.

> apps
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ID job sex race hired age date
3233 clerical F H Y 32 2007-03-05
3234 laborer M H N 51 2007-03-05
3235 clerical F B N 35 2007-03-06
3236 supervisor F H N 32 2007-03-06
3237 service F W N 19 2007-03-07
3238 service F H N 27 2007-03-08
... and so on.

Even this trivial snipet of dialog exemplifies an important aspect of the notation: names are
associated with values and the values can have a potentially complicated structure, in this
case a table of data consisting of “variables” (the columns) and “cases” (the rows).

Suppose we want to know the mean of one of the variables, say the age of the applicants.

> mean( apps$age )
35.4

In order to understand such notation, a student would need to know several things: subset
is an operator that takes arguments. We can access one variable of the apps table using the
$ notation.

None of these things is obvious to an untrained reader, but none of them is difficult.

Once you know the syntax of the operator/argument notation and the names of a few oper-
ations, some things become self explanatory:

> sd( apps$age )
10.4

> proportion( apps$hired )
Y

0.26

We need operators for Cobb’s first R, Randomize. Here is one, that randomly samples (with
replacement) from a collection:

> resample( apps$age )
21 47 26 47 19 49 ... and so on

> resample( apps$age )
44 51 44 29 37 47 ... and so on

We can build a bit on top of this:

> mean( resample( apps$age ) )
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37
> mean( resample( apps$age ) )

35.4

Since resample is random (and with replacement), we got different results when we repeated
the command.

Cobb’s second R is Repeat. In plain English, we might naturally say, “Repeat this 10 times.”
Our notation need only convey the meaning of this and 10 as arguments:

> do(10) (mean(resample(apps$age)))
34.7 37.0 37.0 34.7 31.7 36.3 33.2 34.2 35.8 38.3

The notation for “store this result” is straightforward:

> samps = do(500) (mean(resample(apps$age)))

Finally, we can find a standard error:

> sd(samps)
2.59

I do not claim that this notation is the easiest way to provide a student with ability to do
statistical calculations. For pure ease of use, it’s hard to beat a spreadsheet GUI with a drop-
down menu on each variable labeled “Bootstrap the Standard Error.” But the point isn’t to
implement a calculation, it’s to implement a calculation in a way that makes the structure
and logic clear to a student and lets the student generalize a bit. Could a student look at the
above few lines and figure out how one would find the standard error of a sample median or of
a sample standard deviation? I think so. Could a student look at the lines and explain why
the standard error is not the same as the sample standard deviation of the variable? Yes, so
long as the student had been taught to see that samps is generated from apps$age but isn’t
exactly the same as it.

Let’s return to the employment discrimination example. The basic logic of inference is that
we need to compare the observed difference in hiring rates to that we would expect if there
were no discrimination. What makes this a statistical problem is that we acknowledge that
random fluctuations can cause a non-zero difference in hiring rates even when there is no
discrimination.

To study this, we can create a world in which there is no hiring discrimination and see what
sorts of fluctuations there are. In such a world the hiring decisions would be independent of
the applicants’ traits, for instance sex. It’s a profound statistical concept that we can create
such independence by randomizing the value of sex for each applicant. Teaching that concept
isn’t trivial, but the notation for doing this on the computer is a straightforward extension of
what we have already seen.
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Here are the observed hiring rates for men and women:

> proportion( hired, by=sex, data=apps )
Y

F 0.286
M 0.227

The difference in rates is

> diff(proportion( hired, by=sex, data=apps ) )
Y

M -0.0584

Let’s take one trial from a world without discrimination:

> diff(proportion( hired, by=resample(sex), data=apps ) )
Y

M -0.0994

The subtlety here is that we are resampling the sex variable on its own.

To compare the observed differences to see if they are plausibly from a world in which there is
no discrimination, repeat the no-discrimination trial many times and see how often it happens
that the non-discrimination world produces differences as big as those that we observed in
the actual world.

> samps = do(1000) ( diff( proportion( hired, by=resample(sex), data=apps) ) )
> proportion( abs(samps) > abs(-0.0584) )

TRUE
0.704

That last command shows an instance of Cobb’s third R: Reject.

I don’t want to imply that this notation must change what we teach, just that it supports
teaching in a different way. If you want to teach χ2 tests on two-way tables, do that. But
perhaps your students would benefit from seeing what the χ2 values look like when the
connection between the two variables is severed by randomization.

Some will object that this notation is too difficult or too abstract, or that students can’t be
expected to enter commands without errors and that, when errors inevitably occur, students
will not be able to diagnose and fix the mistake. This is a legitimate objection. Students can
be confused by the details of the syntax: curly braces versus parentheses, the need to balance
left and right brackets, and so on.
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It’s essentially an empirical issue whether such notation can be used effectively by mainstream
students. My own experience at a selective liberal arts college, which has been successful,
may not be representative of the difficulties faced by instructors at other types of schools.
Still, I see no reason why this notation is harder than that successfully used by millions of
high-school students on graphing calculators.

It’s not just students. Many if not most instructors of introductory statistics are not familiar
with computer language syntax. The past education didn’t provide any such training and
there is little or no mechanism for ongoing professional development. Unlike other professions
which require strong technical skills in an evolving environment — medicine, engineering,
aviation, accounting — statistics education has no licensing system that mandates ongoing
training.

The history of personal computers suggests that point-and-click interfaces are more effective
than command-line interfaces, not for technical reasons but because they can be operated
effectively with little training. There are now several statistical software packages with easy-
to-use point-and-click interfaces, e.g., FATHOM (Finzer 2007) or JMP (SAS Institute 2007)
SPSS offers a “student version” (Prentice Hall 2007) which disables the command-line inter-
face. Systems such as FATHOM offer the ability to write dynamic simulations which can
be effective for teaching ideas such as sampling distributions, bootstrapping, and so on. But
none of these systems provide a notation or user interface that supports Cobb’s Three Rs: a
way to assemble statistical operations in terms of these Rs.

An intermediate possibility — between the flexibility of command line statements and the
user-robustness of point-and-click — is graphical programming languages such as Labview
(National Instruments 2007) in which algorithms are built by connecting modules graphically:
a kind of software breadboard. Perhaps we need to develop such modules to support statistical
operations, e.g., a “select variable” module, a “resampling” module, and so on that could be
connected to a “repeat this” module.

For the present, however, I think it important to focus on the computational concepts that
we want students to learn, supporting this learning with already available software. Once we
have consensus about the concepts, we can optimize the ease of use of software to help convey
them.

6. THE BASICS OF COMPUTATION

In evaluating any notation for use in teaching statistics I look at two main criteria: First the
notation should allow students to perform the necessary calculations; Second, the notation
should highlight the logic of what is going on. Black-box macros or calculator button satisfy
the first criterion, but they fail to satisfy the second.

In my experience, students can successfully learn the notation and concepts presented above
by example through their work in a statistics class. The notation is implemented in R (2006),
a free, high-level statistics package.Much of the notation is native R, but a few extensions
have been written some of which are described in Appendix B. (The extension software file
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is available as an auxiliary file to this article, math155.r, or by contacting the author.)

Students respond well to examples, but it’s also important to identify and name the concepts
underlying them. This helps us communicate and it helps students to generalize their learning
to new settings. This certainly applies to new languages (even the Minitab macro!), but I
find that it even applies to the effective use of graphical user interfaces.

To be effective users of computers in statistics, I believe that all students should be taught
and learn these principles of computation:

1. Computation is a transformation. A computation takes one or more inputs and
produces an output. sqrt(10) → 3.162 is an example, as is resample(apps$age) →
21, 47, 26, 47, 19, 49, ...

2. Algorithm. A potentially complicated procedure can be specified as a collection of
simpler procedures. The output of one computation can be used as the input to other
computations. For instance, mean(resample(apps$ages))

3. Syntax. Syntax matters. For example, braces and parentheses must be used prop-
erly (e.g., they must be balanced, brackets for indexing may differ from brackets for
indexing), = means something very different from ==, ...

Humans communicate largely using context — we can do a pretty good job satisfying
basic needs even when we don’t know the local language. The cost of this is ambiguity.
The syntax of computer languages is a compromise between ease of use and the need to
avoid ambiguity.

4. Collection. Sets of values can be collected together and the set can be dealt with as a
whole or by accessing individual elements. Examples: mean(apps$age) or sd(samps).

5. Repetition. An operation can be repeated many times and the individual results made
part of a collection. do(5)(mean(resample(apps$age)))

6. Assignment. Numbers and other values can be stored for later access.

samps = do(500)(mean(resample(apps$age)))
hist(samps)
sd(samps)

7. Selection. Values that meet a given criterion can be pulled out. For example, here’s
some notation for selecting applicants for laborer jobs:

Lcases = subset( apps, Job==’laborer’ )

The second argument contains the answer to a question: which cases have a value of
Job that matches the string “laborer”.

8. Abstraction. An new operation can itself be created out of old ones and stored and
even passed as an argument. For example, here is an operator that generates the sum
of n dice:
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roll.dice = function(n=2){ sum( resample(1:6,n) ) }

I don’t have my students do much of this, but building operations exercises students’
understanding of arguments. It also empowers students: they see there is nothing
mysterious about creating a new operator.

7. WHEN, WHERE, AND WHO?

The point of the above is not to claim that it’s easier for students to do resampling or
permutation tests than to use traditional methods to construct confidence intervals or to
perform t-tests. The reason to teach resampling or permuation is because they reflect more
easily generalizable ideas and, for many students, they are more accessible conceptually.

If we give students the appropriate tools and teach them the appropriate concepts about
computation, it is very feasible to teach resampling and permutation at the introductory
level. We can move into the statistics that we want to teach rather than the statistics that
we can teach with only a calculator.

There is an “if” in the above paragraph. “If we give students the appropriate tools ....” When
and where should this happen? Who should be responsible for it?

Currently no one at a typical college or university considers themselves responsible for teaching
computation. To test this statement in operational terms, ask yourself this: Which course
could a student at your university plausibly take to prepare himself or herself well for the
Three Rs? Math departments, where students already are taking courses, don’t talk about
randomization and repetition. Computer science departments do, but few non-majors have
contact with them.

Statisticians are uniquely positioned to fill the gap. First, statistics itself is required for a wide
range fields, so statisticians have contact with large number of students. Second, statistical
computation is needed in follow-up courses; providing transferable skills is valued. Third,
much of the computation that people encounter involves collecting, storing, and accessing
data, functions that are closely related to the statistical analysis of data.

By embracing computation, statisticians can do a better job of teaching statistics and can
provide a valuable service to students and the college or university as a whole. Let’s do it.

8. APPENDIX A

Formula 1 is my translation of an official US Department of Labor (1993) publication. Here
is the original.

WORKSHEET 17-12a: STATISTICAL ANALYSIS
(Based on Selection Rates)

This Worksheet may be used to find the statistical significance of a difference in selection
rates.
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At the top of the sheet, enter the SCRR page 17 problem number and, beside“Issue,” enter the
names of the particular groups whose selection rates you are comparing, the type of selection
decision and for what job(s); i.e., Female vs. Male Hires for Management Trainee. Then
complete this page as follows:

(a) Step #1: Find the difference in selection rates by subtracting the lower rate from the
higher.

(b) Step #2: For the value of one Standard Deviation (S.D.):

1. Multiply the total selection rate by 1 minus the total selection rate.
NOTE: “1 minus the total selection rate” is just a shortcut for the total non-
selection rate; i.e., if the total selection rate is .25, then 1 - .25 or .75 is the total
non-selection rate.

2. Then find the value of 1 divided by the number of one group in the pool (of
applicants, of candidates) and add it to the value of 1 divided by the number of
the other group in the pool.

Multiply the result of (a) by the result of (b) and find the square root. This is one
Standard Deviation.

(c) Step #3: For the number of Standard Deviations of the difference in selection rates
shown in Step #1, divide the result of Step #1 by the result of Step #2.

Generally speaking, a result of 2 or more Standard Deviations is considered statistically
significant.

9. APPENDIX B

The notation presented in Section 5 is built on the R (2006) statistics system and is very
similar to the standard R notation.

R provides many types of objects: simple types (numbers, character strings, booleans), com-
pound types (arrays, lists, data frames, factors), and more advanced types (formulas, etc.)
This diversity is important for general programming, but to introductory-level students it can
be daunting. It’s helpful for such students to keep the set of operations small and to provide
packaged operations which, while conveying a unified concept, avoid syntactical complexities.

I’ll illustrate this by contrasting two operations native to R with the corresponding operations
in the notation I propose.

R provides a flexible sample operator which can be used to select random elements of a set. It
operates more-or-less intuitively on a simple array, but when given a data frame (a table with
cases as rows and variables as columns) it does a very counter-intuitive thing: it samples the
variables at random, not the cases! The resample operator in Section 5 samples the cases.
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Resample is a trivial program based on sample, but it effectively hides the need to think
about the internal structure of data frames.

The do operator in Section 5 parallels a built-in R operator called replicate. However,
replicate returns a matrix rather than a data frame — that is, each replication generates one
column of the result rather than one row. To a programmer, this is a trivial difference, easily
fixed by applying the transpose operator to the result of replicate. But for introductory
students, it’s better to follow established patterns: each replication should be one more case,
and cases are rows.

The do operator also differs from replicate in how it handles complicated types. For exam-
ple, in the introductory course that I teach, students frequently bootstrap model coefficients.
Linear models are fitted in R using the lm command, which, importantly, uses an excellent,
clear notation for specifying the model. Here’s an example using the job applicant data:

> lm( age ~ sex + job, data=apps)
Coefficients:
(Intercept) sexM joblaborer jobservice jobsupervisor

30.937 -2.608 8.036 7.564 2.396

The lm program illustrates an important aspect of algorithms, that the output of one program
can become the input to another. For example:

> summary(lm( age ~ sex + job, data=resample(apps)))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 31.331 3.264 9.600 1.84e-12 ***
sexM -3.663 2.222 -1.648 0.10628
joblaborer 5.631 3.849 1.463 0.15047
jobservice 7.366 3.208 2.296 0.02637 *
jobsupervisor 18.669 6.254 2.985 0.00457 **

Residual standard error: 7.545 on 45 degrees of freedom
Multiple R-Squared: 0.2726, Adjusted R-squared: 0.2079
F-statistic: 4.215 on 4 and 45 DF, p-value: 0.005542

or

> anova(lm( age ~ sex + job, data=resample(apps)))
Analysis of Variance Table

Response: age
Df Sum Sq Mean Sq F value Pr(>F)

(Intercept) 1 59444 59444 672.3052 <2e-16 ***
sex 1 29 29 0.3301 0.5684

14 Technology Innovations in Statistics Education Vol. 1 [2007], No. 1, Article 5

http://repositories.cdlib.org/uclastat/cts/tise/vol1/iss1/art5



job 3 329 110 1.2385 0.3069
Residuals 45 3979 88

It’s straightforward to fit a model to the case-wise resampled data, giving one realization of
a bootstrap distribution of the coefficients:

> lm( age ~ sex + job, data=resample(apps))
Coefficients:
(Intercept) sexM joblaborer jobservice jobsupervisor

35.674 -4.082 2.784 1.128 -9.007

The do operator has been arranged to recognize when the operation it is iterating produces a
linear model object. It then does the right thing, pulling out the coefficients (as opposed to
the object as a whole or the residuals, fitted values, etc.)

> do(3)(lm( age ~ sex + job, data=resample(apps)))
X.Intercept. sexM joblaborer jobservice jobsupervisor

1 29.10099 -4.269316 10.970199 10.533664 -1.600993
2 33.78310 -6.090139 8.274848 7.116478 9.550235
3 26.19910 1.845650 10.361776 10.323694 8.800904
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