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Abstract: Much of nonlinear time series analysis is concerned with inferring
unmeasured quantities — e.g., system parameters, the shape of attractors in
state space — from a noisy measured time series. From a Bayesian perspective,
the time series is a vector sample picked at random from a probability density.
The density reflects the system dynamics and our subjective uncertainty about
system parameters, the measurement function, dynamical noise and measure-
ment noise. The conditional probability density of the system parameters given
the measured data is the basis of a Bayesian estimate of the system param-
eters. Using illustrative chaotic systems with large-amplitude dynamical and
measurement noise, we show here that it is feasible to use the Markov chain
Monte Carlo (MCMC) technique to generate the Bayesian conditional probabil-
ities. The resulting parameter estimates are markedly superior to those based on
conventional least-squares methods: the MCMC-based estimates are unbiased
and allow estimates of dynamical parameters on unmeasured components of the
state vector. In addition, the MCMC method enables de-noised attractors to be
reconstructed, not just in an embedding based on lags of measured variables but
in the state space that includes unmeasured components of the dynamics’ state
vector. The general purpose MCMC technique effectively combines techniques
of nonlinear noise reduction and nonlinear parameter estimation.
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Many techniques for time series analysis are based on the idea of representing

the time series z1, . . . , zN as a probability density. For example, the correlation

and information dimensions can be written in terms of an integral over a proba-

bility density p(zt, zt−h, . . . , zt−(m−1)h) in a lag embedding space [1] of dimension

m and lag h ; the mutual information [2] is constructed from integrals over the

same density typically with m = 2; nonlinear noise reduction [3] often involves

modeling the probability density p(zt, zt−h, . . . , zt−(m−1)h) locally as having sup-

port on a linear manifold of dimension k < m ; nonlinear prediction [4] implicitly

or explicitly examines a conditional probability p(zt+f |zt, zt−h, . . . , zt−(m−1)h).

All of the above methods have in common that the dimension m of the

space in which the probability density is considered is m � N , where N is the

number of data points in the time series. For example, in computing correlation

dimensions the embedding dimension is typically in the range m = 2 to 20 even

for time series of length N � 1000. [5]

In this report, we explore some advantages of considering probability densi-

ties in spaces with dimension > N . We take a Bayesian perspective where the

probability density in the high-dimensional space is generated by two factors:

the measured time series and a model for the system dynamics.

We consider models in the form of discrete-time, noisy dynamical systems

~xt+1 = F (~xt,~c) + νt (1)

zt = G(~xt) + µt (2)

where the measurement zt at time t is related to the vector state ~xt of the
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system by the measurement function G(·). The vector ~c are the parameters

of the model. The vector-valued function F sets the deterministic part of the

dynamics. νt is additive dynamical noise and µt is measurement noise which we

take to be gaussian white noise of perhaps unequal variances.

Such models usually include unknown parameters ~c as well as the unknown,

random values of νt and µt at each time t. The modeller has a notion of the

probable range of the parameters and the distribution of νt and µt (perhaps

summarized by their variances σ2
ν and σ2

µ whose exact values are usually un-

known and therefore might be described in terms of a probability distribution)

— this knowledge is termed a “prior” in Bayesian nomenclature which we can

denote p(~c, σν , σµ).

Given the prior, forward simulation of the model is easy: use a random

number generator to pick specific parameter values from p(~c, σν , σµ), construct

a fixed sequence νt and µt, and then iterate equations (1). Each such simulation

can be seen as a Monte Carlo generation of one point out of the modeller’s

prior probability distribution for the quantities in the model. For example by

looking at the model state at a specific time, say t = 9, from the simulations,

the distribution of the system state ~x9 implied by the modeller’s prior can be

inferred.

Such forward simulations are often used informally by modellers to see

whether a model can generate outputs that look like the measured data. When

the simulated data look like the measured data, the parameters are accepted as

plausible candidates for the data. Systematically varying the model parameters
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in an attempt to match the model output to the measured data is a way of

fitting the model to the data.

The informal approach of simulate→ compare-with-data is a way to generate

conditional probabilities. If the modeller rejects all samples from the prior prob-

ability distribution leading to a simulation output that does not resemble the

data, the remaining samples will be what is called a “posterior” in the Bayesian

terminology: the probability distibution of the model parameters conditional

on the measured data, that is p(~c, σν , σµ|z1, . . . , zN ). By looking at a variable

of interest from the non-rejected simulations, say, ~x9, one gets the probability

distribution of that variable conditioned on the data. This is a way of inferring

a model variable from the measured time series.

This logic for computing the posterior relies on the possibility of a sim-

ulation’s output closely matching the time series. Unfortunately, due to the

random µt and νt, a forward simulation approach is extremely unlikely to pro-

duce values that so exactly match the measured time series that any confidence

can be had in the inferred values. Instead, a “backwards” simulation can be

used where the output of the simulation is fixed to the observed data and the

variables chosen from the modeller’s prior that lead to this output. The Markov

chain Monte Carlo (MCMC) technique provides a means for implementing this

backwards simulation: matching the output to the data while selecting variables

in a manner that corresponds to the modeller’s prior distribution.

The MCMC approach was initially demonstrated in nonlinear dynmics time

series analysis by Davies [6] for the purposes of model-based noise reduction,
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and by Heald and Stark [7] for estimating the relative size of measurement and

dynamical noise. Very recently published work by Meyer and Christensen [8],

building on a maximum likelihood approach from McSharry and Smith [9], has

shown that the technique can be used to estimate parameters of chaotic models.

Here, we show that it is a practical means for estimating parameters of models

as well as noise levels, and for inferring unmeasured state variables from noisy

measured data.

To fix concepts, we examine time series from the noisy Henon system

xt+1 = c2 − c1x
2
t + c3xt−1 + νt (3)

zt = xt + µt

with c1 = 1.3, c2 = −1 and c3 = 0.3 and where the state vector ~xt = (xt, xt−1).

Plots of successive values of ~xt are shown in Figs. 1A1 and 1B1 for various

amounts of dynamical noise. From time series with measurement noise such as

shown in Fig. 1A2 and 1B2 we seek to compute estimates ĉ1, ĉ2, and ĉ3 of the

dynamical parameters as well as the variances of the white noise processes νt

and µt. We note that this system is somewhat special in that the time series

measures all components of the state vector ~xt. Therefore in this special case

we can write the system dynamics (Eq. 3) directly in terms of the measurement

zt, giving

zt+1 = ĉ1 − ĉ2z
2
t + ĉ3zt−1 + ωt (4)

where ωt is a noise term that reflects both the dynamical noise and measurement

noise. A common approach to inference about dynamics from time series is to
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apply ordinary least squares linear regression of zt+1 against zt−1 and z2
t to find

ĉ1, ĉ2, and ĉ3. With the least squares approach we can use the residuals

zt+1 − ĉ1 − ĉ2z
2
t + ĉ3zt−1

to estimate the variance of ωt.

The dynamical noise νt in Eq. 3 may affect the system’s trajectory but it

does not lead to bias in the estimates ĉ1, ĉ2, and ĉ3 when performing ordinary

least squares regression. In contrast, measurement noise µt systematically biases

the estimates (Fig. 2). This bias is explained by the fact that that ωt in Eq. 4

is not gaussian white noise as can be seen by substituting zt − µt for xt in Eq.

3. (For example, ωt includes a state-dependent term c2ztµt.)

Accurate estimation of system parameters requires appropriate incorpora-

tion of the measurement noise into the dynamical model. One way to do this is

to estimate a measurement noise term µ̂t for each point in the time series and

transform the measured time series to an inferred, de-noised time series ξt using

ξt = zt − µ̂t. (5)

Kostelich and Yorke [10] and Davies [11] developed methods to compute

µ̂t from time series by minimization of
∑

ω2
t and

∑
µ̂t from models such as

Eq. 4 and 5. These minimization methods require some a priori estimate of the

relative RMS amplitudes σω and σµ of the ωt and µt noise processes: by making∑
ω2

t too small when minimizing one overcleans the time series. Consideration

of this problem led Davies [6] and Heald [7] to develop Bayesian techniques for

estimating σω/σµ.
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Bayesian Perspective

Rather than looking for an optimal single value of ~c, we consider the condi-

tional probability of the model parameters conditioned on the measured time

series, p(~c|z1 . . . zN ) which is termed the “posterior” probability since it gives

the probability of the parameter vector ~c (containing, inter alia ĉ1, ĉ2, and ĉ3)

after the measurement. Bayes’ rule allows one to write the posterior probability

as a product of a likelihood function and a prior probability

p(~c|z1 . . . zN ) ∝ p(z1 . . . zN |~c)p(~c)

The prior probability p(~c) can in principle incorporate any a priori knowledge

of the parameters but in this work we take it to be a wide and uninformative

distribution. The likelihood function p(z1 . . . zN |~c) reflects the model of the

dynamics of the system.

To make explicit the relationship between the model dynamics and the like-

lihood function, we incorporate an unmeasured initial condition ~ξ0 into the

conditional probability

p(~c|z1 . . . zN ) ∝
∫

R~ξ0

p(~c, ~ξ0|z1 . . . zN )dR~ξ0
(6)

∝
∫

R~ξ0

p(z1 . . . zN |~c, ~ξ0)p(~c, ~ξ0)dR~ξ0

where R~ξ0
is the domain of ~ξ0.

Using the dynamical/measurement model with fixed parameters ~c

ξt+1 = ĉ1 − ĉ3ξ
2
t + ĉ3ξt−1 + νt (7)

zt = ξt + µ̂t
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guesses of ~ξ0 can be propagated to a description of the joint probabilities of

ξt and zt for all t. In order to do this we need a model of the probability

distribution of νt and µ̂t which we take to be gaussian white noise of unknown

variances σ2
ν and σ2

µ respectively. Notationally, we will incorporate σ2
ν and σ2

µ

into the parameter vector ~c.

Continuing to expand the conditional probabilities in terms of the inferred,

de-noised variables ξt we have

p(~c|z1 . . . zN ) ∝ (8)∫
R~ξ0

∫
Rξ1

. . .

∫
RξN

p(z1 . . . zN , ξ1 . . . ξN |~c, ~ξ0)p(~c, ~ξ0)dR~ξ0
dRξ1

. . . dRξN

The MCMC technique allows one to sample from a joint probability distribu-

tion such as in Eq. 8 by successively sampling from the conditional probability

of each of the variables holding constant all the other variables during each

sample.[12]

We implemented MCMC sampling of p(~c|z1 . . . zN ) using the Bayesian Esti-

mation using Gibbs Sampling software package (BUGS) [13], a standard engine

for MCMC sampling, which automatically deduces the needed conditional dis-

tributions from statements that describe the relationships between sets of vari-

ables. (An example of the form of these statements is given in the Appendix).

The dynamical model of Eq. 7 induces the conditional probability for each ξt+1

given ξt, ξt−1 and parameters ~c. Expressed in terms of conditional probabili-

ties, the essential dynamical relationships are these (using N(a, b) to denote a
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gaussian distribution of mean a and variance b) :

Measurement: ξt ∼ N(xt, σ
2
µ) for t = 1 to N

Dynamics: ξt+2 ∼ N(c1 − c2ξ
2
t+1 + c3ξt, σ

2
ν) for t = 1 to N − 2.

(9)

In addition to the conditional probability relationships expressed in above, one

must provide a prior probability density for the parameters in ~c (including the

noise variances) as well as the initial condition ~ξ0.

Estimation of Model Parameters using MCMC

To test the ability of the MCMC method to estimate model parameters in the

face of measurement and dynamical noise, we generated time series of length

N = 1000 from Eq. 3. For each time series, measurement and dynamical noise

were generated as computer pseudo-random numbers with fixed variance σ2
µ and

σ2
ν respectively. Different time series were generated with σν ranging from 0 to

1.0, with the dynamical noise held at σµ = 0.04.

Ordinary least squares regression was used to generate estimates of c1, c2,

and c3. The noise amplitude was estimated by the standard deviation of the

residuals from the fit. This noise estimate was then translated in the standard

way into an estimate of the variance in the estimated c1, c2, and c3. These least

squares estimates are plotted in Fig. 2.

For the MCMC estimation, we set the prior on ~ξ0 to be normal with mean

and standard deviation set to that of the time series. The priors for σµ and

σν were set to be uniform with minimum 0 (the no-noise limit) and maximum

equal to the standard deviation of the time series (the all-noise limit). The
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priors for c1, c2, and c3 were set to be centered on the least squares estimates,

with variance 50 times that indicated by the least squares estimates. The BUGS

engine was used to generate samples of c1, c2, c3, σµ, and σν conditional on the

time series zt.

Results are presented in Fig. 2. Even for large amounts of measurement noise

where linear regression is substantially biased, MCMC gives unbiased estimates

of the dynamical parameters as well as accurate estimates of the variances σ2
µ

and σ2
ν of the measurement and dynamical noise.

In contrast to the case for linear regression, error bars for the MCMC es-

timates reasonably reflect deviations from the true values. In addition, the

estimates of individual inferred state values ξt appear to lie close to the system

attractor. We draw attention to the estimation method’s ability to distinguish

between different amounts of dynamical noise (Figs. 1A1 vs. 1B1) when fitting

identical forms of models to very noisy data. When additional first- and second-

order polynomial terms are added to the model, the coefficients on these terms

are statistically indistinguishable from zero.

Indirect Measurement of Dynamics

In typical experimental or field work one does not measure all components

of the state vector. In this sense, the Henon map is an unrealistic model of

experimental dynamics. We therefore examine two cases where the measurement

captures only one component of a two-dimensional state vector: the Ikeda map

and the Tinkerbell Map [14].

10



The Ikeda map (with a complex-valued state vector ~xt)

~xt+1 = c1 + c2~xt exp i
(
c3 − c4/(1− |~xt|2)

)
zt = Re(~xt) + µt

with parameters c1 = 1, c2 = 0.7, c3 = 0.4 and c4 = 6.0. The Tinkerbell map

operates on state (xt, yt)

xt+1 = x2
t − y2

t + c1xt + c2yt

yt+1 = 2xtyt + c3xt + c4yt

zt = xt + µt

with parameters c1 = −0.3, c2 = −0.6, c3 = 2.0, c4 = −0.27. In addition to

the inferred variable that reflects the de-noised measurement, we add to the

estimation procedure another inferred variable representing the 2nd component

of the state vector. The inferred variable is therefore represented as a vector

~ξt which, for the purposes of stating marginal probabilities, is tied to the time

series via the measurement function zt = G(~ξt).

Takens’ delay embedding theorem [1] and extensions [15] indicate when an

attractor reconstructed from lag embedding of a time series will be topologically

equivalent to the attractor in the true state space but the attractor shapes can

be very different in the two spaces. (For example, compare the top and bottom

rows in Fig. 3.)

A dynamical function F inferred from the embedded time series can have

a different form from the function f in the true state space. The attractor

described by the inferred state variables from MCMC estimation has the same
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shape as the state-space attractor for signal-to-noise ratios of as small as 8 dB

(Fig. 3), although individual points ~ξt are not necessarily identical to the true

state ~xt. Model parameters for f estimated from the inferred state variables are

unbiased.

Note that in the Tinkerbell map there is a symmetry (y, c2, c3) → −(y, c2, c3).

The measurement zt = xt +µt does not break this symmetry: if the priors on c2

and c3 range over both positive and negative values, the inferred yt will include

both branches of the symmetry. Here, we have reflected all inferred quantities

onto one branch.

In many experimental situations, a measurement is made not of a state

variable, but of some function of the state. The MCMC technique is able to draw

valid inferences here as well. We have investigated this using the measurement

function zt = y2
t +µt in the Tinkerbell map. Since yt takes on both positive and

negative values, this measurement function introduces a genuine ambiguity when

inferring from zt to yt. Nonetheless, despite the extra burden of inferring the sign

on each yt, the MCMC method is able to provide estimates of model parameters

that cover the correct values and to reconstruct the attractor appropriately.

Preliminary work on the Lorenz equation system (modelled as an Euler

finite-difference system) demonstrates that the MCMC method can make ap-

propriate inferences with measurement functions such as y2
t xt or xtytzt.

Local Linear Functions

The use of a global model is important to the MCMC method or to any other

method that seeks to construct inferred, de-noised variables since it allows each
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de-noised estimate ξt to appear in more than one conditional probability expres-

sion. In the examples considered so far, the model has played an essential role

since the objective was either to estimate model parameters or to infer a model

state. However, for different objectives such as estimating Lyapunov exponents

from data, the specific form of the model is relatively unimportant so long as it

has the flexibility to represent the dynamics that underlie the data.

Davies [6] used radial basis function models with the MCMC technique. Such

models are hard to use within the BUGS framework, so we have explored the

ability to make inferences from time series data using another class of general-

purpose model, threshold autoregressive models [16] with fixed domains defined

by d1, d2, . . . for each linear segment. For one-dimensional states, such models

were introduced by Pijn for the analysis of EEG data [17], and can be written

ξt+1 =


a1ξt + b1 if ξt ≤ d1

a2ξt + b2 if d1 < ξt ≤ d2

...
(10)

To illustrate the technique, we model the quadratic map with noisy mea-

surement:

xt+1 = 4xt(1− xt) (11)

zt = xt + µt

We added gaussian white measurement noise µt to the dynamics of 11, col-

lected N = 500 measurements and then fit these measurements to a locally

linear model of the form Eq. 10 with 4 evenly spaced linear segments. The re-

sulting piecewise linear model was then used to estimate the lyapunov exponent
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of the data using the mean of the logarithm of the slope of linear segment on

which each data point fell.

Fig. 4 shows the estimated lyapunov exponents using MCMC estimation,

ordinary least squares regression, and total least squares regression [18]. Due

to the measurement-noise induced bias in least squares regression, the lyapunov

exponent estimated from the least squares locally linear model is biased to be too

low for large amounts of measurement noise (Fig. 4B). The MCMC technique

also produces a somewhat biased estimate, but at moderate noise levels (SNR >

7 dB) is systematically superior to the least squares model’s estimates. (Since

in this system σν = 0, total least squares can also be used for the local linear

estimates, but produces segments that are consistently too steep. We believe

this is due to the short length of domains.)

Discussion

We have shown that the MCMC technique offers a practical means of analyzing

time series that are contaminated with measurement noise. In many cases it

provides markedly superior performance to ordinary least squares regression.

Davies [6] has recently demonstrated the use of MCMC for noise reduction

in data when the form of the dynamical model is unknown. Heald [7] has shown

that Bayesian methods allow estimation of the relative sizes of dynamical and

measurement noise when the dynamical model and its parameters are known.

We extend this previous work by showing that MCMC allows estimation of the

dynamical system’s parameters simultaneously with the estimation of measure-
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ment and dynamical noise, and that even parameters relating to unmeasured

components of the dynamical system’s state can be accurately measured. Davies

[6] showed that MCMC can estimate linear parameters of a general purpose

model (radial-basis function) and speculated that estimation of nonlinear pa-

rameters could be made was well. Our work supports Davies’ speculation: the

nonlinear parameters of the Ikeda system were accurately estimated by MCMC.

An important issue in the MCMC technique is convergence of the iterates

of the Markov chain to the true probability distribution. We use 1000 to 10000

iterations before commencing sampling. Depending on the particular model

being used and the number of start-up iterations, the computations take ap-

proximately 1-60 minutes for time series of length 1000 on a standard 300 MHz

Intel 586 computer. The required convergence time generally increases with the

measurement noise level. In the trials reported here, convergence was easy to

assess because we know the actual values used in the data generation. When

this is not the case, one can use other diagnostics for convergence [19] or one

can use simulations to estimate convergence requirements.

Use of prior probabilities that are sensibly related to the measured data —

e.g., the measurement noise variance is no larger than the variance of the data,

model parameters have values centered on those found from linear regression

— helps to speed regression. Using the data to set priors, a practice termed

“empirical Bayes”[12], is in some sense a violation of the Bayesian approach:

the priors are reflecting our knowledge before the data have been seen. We

note that the empirical priors that we set use information that is conveyed by

15



essentially two degrees of freedom in the data, the center and width, which

is typically a minute part of the overall data. In addition, experimental data

has generally been scaled by amplifiers, etc. in a way that involves previous

examination of a signal outside of the recorded data set. Thus, the empirical

priors may reasonably be regarded as genuine priors, where the recorded data

themselves serve merely to convey information about how the experimenter set

up the apparatus.

When carrying out noise reduction on data, the choice of a method should

depend on the use to which the noise-reduced data will be put. If the purpose

is, for example, to estimate dimensions or power spectra, a model-independent

noise reduction method may be appropriate such as those reviewed in [3] and [4].

However, if the de-noised data are to be fitted to a model, we suggest that the

model should be used as well in the noise reduction step. The MCMC method

appears to be effective in this regard.

We note that the de-noised data ~ξt are generally not the same as the true

state ~xt but we find that ~ξt fall close to the true attactor. (E.g., see Fig. 3.) This

is perhaps to be expected; the estimate of the measurement noise µ̂t is based on

two components: the estimated parameters of the model and the redundancy

in µ̂t that stems from the participation of measurement zt in more than one

embedding vector. (In an embedding space of dimension m, zt appears in m

embedding vectors for most t.) All of the data points are participating in the

estimates of the model parameters, making these fairly well known. However

only m data points contribute to the estimate of each µ̂t. The ability to estimate
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µ̂t is based not so much on the power of averaging the redundant appearances of

zt in multiple embedding vectors as on the movement of ~ξt towards the functional

surface defined by the model f . The movement is “towards” rather than “onto”

because dynamical noise allows ξt to be off of the surface. The appearance

of zt = ξt − µ̂t in multiple embedding vectors constrains µ̂t to obey a set of

consistency conditions

ξt = f(ξt−1, ξt−2, . . .) + νt−1

ξt+h = f(ξt, ξt−1, . . .) + νt

ξt+2h = f(ξt+1, ξt, . . .) + νt+1

...

These multiple conditions allow the discrimination between measurement and

dynamical noise to be made, unlike the situation in Eq. 4 where both forms of

noise are brought together into the single term ωt.

The power of the MCMC technique to infer deterministic dynamics in the

presence of large amounts of measurement noise invites the question of whether

the technique will similarly infer determinism even when there is none and

provide precise (but meaningless) fits of deterministic models to data that are

purely dynamical noise. This is indeed the case. For example, in trials fitting

pure noise to locally linear maps, MCMC underestimates the level of dynamical

noise, accounting for much of the time series in terms of measurement noise.

This occurance of this situation can be identified using the high variance in the

estimated model parameters and by the cross-validation technique of comparing
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two models generated from the first half and second half of the data set.

It should be kept in mind that the inferences drawn by MCMC are condi-

tioned on the assumed model. The inferences do not directly confirm or reject

the correctness of the model; for this purpose it is necessary to introduce al-

ternative models and examine the relative evidence for each of the models.

Techniques for doing this are described in Carlin and Louis [12].

The ability to estimate the dynamics of components of the dynamical state

that are not directly measured should facilitate the interpretation of data in

terms of physical models. One can foresee applications, for example, such as

using measurements of heart rate to estimate the parameters of the components

of the cardio-respiratory regulatory system that are not directly measureable.

Whether such estimation is practical will depend in part on the quality of the

models being used. The incorporation of dynamical noise into the estimation,

as reported here, allows for a certain amount of mismatch between the model

and the dynamics. Further work needs to be done to understand how much

mismatch is possible. The Bayesian framework is ideal for such estimation,

because it allows explicit statement (using the prior probability distributions on

parameters) of the confidence in different parts of the model.
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Appendix

The BUGS systems reads in the description of a model in the form of state-

ments that describe the prior distribution and the relationships between vari-

ables. From these relationships are deduced the forms of the single-variate

conditional probabilities needed in the MCMC technique. The following is the

complete model specification file needed to describe the Tinkerbell model with

a measurement zt = y2
t + µt.

# BUGS specification for Tinkerbell Map
# measuring Y^2

model tinkerbell;
const N=100; # 100 data points

var x[N], y[N], # the state variables
m1[N], meas1[N], # the measurements
dx[N], dy[N], # calculation intermediates
atau, asigma, # measurement noise amplitude
btau, bsigma, # dynamical noise in x
ctau, csigma, # dynamical noise in y
c[4]; # the parameters

data meas1 in "tinky2.dat"; # file with time series data

# files with starting values for the markov chain.
inits in "tink.ini", x in "tinkx.dat", y in "tinky.dat";

{
# Specification of the priors
x[1] ~ dnorm(0,1) I(-1,2); # priors on initial conditions
y[1] ~ dnorm(0,1) I(-1,1);
c[1] ~ dunif(-1,0); # priors on the model parameters
c[2] ~ dunif(-1,0);
c[3] ~ dunif(0,5);
c[4] ~ dunif(-1,0)
# priors on the noise terms
atau ~ dgamma(1.0E-3, 1.0E-3); # measurement noise
btau ~ dgamma(1.0E-3, 1.0E-3); # dynamical noise in x
ctau ~ dgamma(1.0E-3, 1.0E-3); # dynamical noise in y

22



for (i in 2:N ) {
# the dynamics
dx[i] <- x[i-1]*x[i-1] - y[i-1]*y[i-1] + c[1]*x[i-1] + c[2]*y[i-1];
dy[i] <- 2*y[i-1]*x[i-1] + c[3]*x[i-1] + c[4]*y[i-1];
# dynamical noise
x[i] ~ dnorm(dx[i],btau) I(-1,2);
y[i] ~ dnorm(dy[i],ctau) I(-1,1);

}

# the measurements
for (i in 1:N ){

# the measurement function
m1[i] <- y[i]*y[i];
meas1[i] ~ dnorm(m1[i], atau);

}

}
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Figure 1: Henon Map data with dynamical and measurement noise. A1: True
state variable ~xt = (xt, xt−1) with σν = 0. A2: ◦, measured data (zt, zt−1) with
σµ = 0.3; •, inferred state ξt, ξt−1 using the MCMC method. B1: True state
variable with σν = 0.04. B2: ◦, measured data with σµ = 0.3; •, inferred state.
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Figure 2: Parameters estimated using linear regression and MCMC from Eq. 4
versus measurement noise (measured in terms of σµ and also shown as a signal-to-
noise ration in dB) for time series of length N = 500 with σν = 0.04.

linear regression; ◦ MCMC. Solid lines show the true values of the parameters.
For “noise”, both measurement noise ◦ and dynamical noise 4 are shown for the
MCMC method.
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Figure 3: Top row: Lag embeddings (zt+1, zt) of time series from the Ikeda (right)
and Tinkerbell (left) maps with σµ = 0. Bottom row: ◦ the true state (~xt for the
Ikeda system, (xt, yt) for Tinkerbell) together with the inferred state • from the
MCMC technique. There is virtually identical placement onto the attractor with
measurement noise as large as 8dB. Note that some of the de-noised points are
off the attactor. In this case this stems from insufficient convergence time in the
MCMC method; these points moved onto the attractor when convergence time is
increased.
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Figure 4: Lyapunov exponent λ estimated from a local linear model (Eq. 10) fit
to data with measurement noise for the quadratic map (Eq. 11) versus size of the
measurement noise σµ. •, MCMC estimation based on ξt; +, ordinary least squares
estimation based on zt; x, total least squares estimation based on zt.
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