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About These Notes

We present an approach to teaching introductory and in-
termediate statistics courses that is tightly coupled with
computing generally and with R and RStudio in particular.
These activities and examples are intended to highlight
a modern approach to statistical education that focuses
on modeling, resampling based inference, and multivari-
ate graphical techniques. A secondary goal is to facilitate
computing with data through use of small simulation
studies and appropriate statistical analysis workflow. This
follows the philosophy outlined by Nolan and Temple
Lang1. The importance of modern computation in statis- 1 D. Nolan and D. Temple Lang.

Computing in the statistics
curriculum. The American
Statistician, 64(2):97–107, 2010

tics education is a principal component of the recently
adopted American Statistical Association’s curriculum
guidelines2.

2 ASA Undergraduate Guide-
lines Workgroup. 2014 cur-
riculum guidelines for under-
graduate programs in statisti-
cal science. Technical report,
American Statistical Associa-
tion, November 2014. http:
//www.amstat.org/education/
curriculumguidelines.cfm

Throughout this book (and its companion volumes),
we introduce multiple activities, some appropriate for
an introductory course, others suitable for higher levels,
that demonstrate key concepts in statistics and modeling
while also supporting the core material of more tradi-
tional courses.

A Work in Progress
Caution!

Despite our best efforts, you
WILL find bugs both in this
document and in our code.
Please let us know when you
encounter them so we can call
in the exterminators.

These materials were originally developed for a work-
shop entitled Teaching Statistics Using R prior to the 2011

United States Conference on Teaching Statistics and re-
vised for USCOTS 2011, USCOTS 2013, eCOTS 2014,
ICOTS 9, and USCOTS 2015. We organized these work-
shops to help instructors integrate R (as well as some
related technologies) into statistics courses at all levels.
We received great feedback and many wonderful ideas
from the participants and those that we’ve shared this
with since the workshops.

http://www.amstat.org/education/curriculumguidelines.cfm
http://www.amstat.org/education/curriculumguidelines.cfm
http://www.amstat.org/education/curriculumguidelines.cfm
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We appreciate any feedback you are willing to share
as we continue to work on these materials and the ac-
companying mosaic package. Drop us an email at pis@
mosaic-web.org with any comments, suggestions, correc-
tions, etc.

Updated versions will be posted at http://mosaic-web.
org.

Two Audiences

We initially developed these materials for instructors of
statistics at the college or university level. Another audi-
ence is the students these instructors teach. Some of the
sections, examples, and exercises are written with one or
the other of these audiences more clearly at the forefront.
This means that

1. Some of the materials can be used essentially as is with
students.

2. Some of the materials aim to equip instructors to de-
velop their own expertise in R and RStudio to develop
their own teaching materials.

Although the distinction can get blurry, and what
works “as is" in one setting may not work “as is" in an-
other, we’ll try to indicate which parts fit into each cate-
gory as we go along.

R, RStudio and R Packages

R can be obtained from http://cran.r-project.org/.
Download and installation are quite straightforward for
Mac, PC, or linux machines.

RStudio is an integrated development environment
(IDE) that facilitates use of R for both novice and expert
users. We have adopted it as our standard teaching en-
vironment because it dramatically simplifies the use of R
for instructors and for students. RStudio can be installed

More Info

Several things we use that
can be done only in RStudio,
for instance manipulate() or
RStudio’s integrated support for
reproducible research).

as a desktop (laptop) application or as a server applica-
tion that is accessible to users via the Internet. RStudio server version works

well with starting students. All
they need is a web browser,
avoiding any potential prob-
lems with oddities of students’
individual computers.

In addition to R and RStudio, we will make use of sev-
eral packages that need to be installed and loaded sep-
arately. The mosaic package (and its dependencies) will

pis@mosaic-web.org
pis@mosaic-web.org
http://mosaic-web.org
http://mosaic-web.org
http://cran.r-project.org/
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be used throughout. Other packages appear from time to
time as well.

Marginal Notes

Marginal notes appear here and there. Sometimes these Have a great suggestion for a
marginal note? Pass it along.are side comments that we wanted to say, but we didn’t

want to interrupt the flow to mention them in the main
text. Others provide teaching tips or caution about traps,
pitfalls and gotchas.

What’s Ours Is Yours – To a Point

This material is copyrighted by the authors under a Cre-
ative Commons Attribution 3.0 Unported License. You
are free to Share (to copy, distribute and transmit the
work) and to Remix (to adapt the work) if you attribute
our work. More detailed information about the licensing
is available at this web page: http://www.mosaic-web.
org/go/teachingRlicense.html. Digging Deeper

If you know LATEX as well as
R, then knitr provides a nice
solution for mixing the two. We
used this system to produce
this book. We also use it for
our own research and to intro-
duce upper level students to
reproducible analysis methods.
For beginners, we introduce
knitr with RMarkdown, which
produces PDF, HTML, or Word
files using a simpler syntax.

Document Creation

This document was created on November 30, 2015, using

• knitr, version 1.11

• mosaic, version 0.12.9003

• mosaicData, version 0.12.9003

• R version 3.2.2 Patched (2015-10-06 r69484)

Inevitably, each of these will be updated from time to
time. If you find that things look different on your com-
puter, make sure that your version of R and your pack-
ages are up to date and check for a newer version of this
document.

http://www.mosaic-web.org/go/teachingRlicense.html
http://www.mosaic-web.org/go/teachingRlicense.html


Project MOSAIC

This book is a product of Project MOSAIC, a community
of educators working to develop new ways to introduce
mathematics, statistics, computation, and modeling to
students in colleges and universities.

The goal of the MOSAIC project is to help share ideas
and resources to improve teaching, and to develop a cur-
ricular and assessment infrastructure to support the dis-
semination and evaluation of these approaches. Our goal
is to provide a broader approach to quantitative stud-
ies that provides better support for work in science and
technology. The project highlights and integrates diverse
aspects of quantitative work that students in science, tech-
nology, and engineering will need in their professional
lives, but which are today usually taught in isolation, if at
all.

In particular, we focus on:

Modeling The ability to create, manipulate and investigate
useful and informative mathematical representations of
a real-world situations.

Statistics The analysis of variability that draws on our
ability to quantify uncertainty and to draw logical in-
ferences from observations and experiment.

Computation The capacity to think algorithmically, to
manage data on large scales, to visualize and inter-
act with models, and to automate tasks for efficiency,
accuracy, and reproducibility.

Calculus The traditional mathematical entry point for col-
lege and university students and a subject that still has
the potential to provide important insights to today’s
students.
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Drawing on support from the US National Science
Foundation (NSF DUE-0920350), Project MOSAIC sup-
ports a number of initiatives to help achieve these goals,
including:

Faculty development and training opportunities, such as the
USCOTS 2011, USCOTS 2013, eCOTS 2014, and ICOTS
9 workshops on Teaching Statistics Using R and RStu-
dio, our 2010 Project MOSAIC kickoff workshop at the
Institute for Mathematics and its Applications, and
our Modeling: Early and Often in Undergraduate Calculus
AMS PREP workshops offered in 2012, 2013, and 2015.

M-casts, a series of regularly scheduled webinars, de-
livered via the Internet, that provide a forum for in-
structors to share their insights and innovations and
to develop collaborations to refine and develop them.
Recordings of M-casts are available at the Project MO-
SAIC web site, http://mosaic-web.org.

The construction of syllabi and materials for courses that
teach MOSAIC topics in a better integrated way. Such
courses and materials might be wholly new construc-
tions, or they might be incremental modifications of
existing resources that draw on the connections be-
tween the MOSAIC topics.

More details can be found at http://www.mosaic-web.
org. We welcome and encourage your participation in all
of these initiatives.

http://mosaic-web.org
http://www.mosaic-web.org
http://www.mosaic-web.org


Computational Statistics

There are at least two ways in which statistical software
can be introduced into a statistics course. In the first ap-
proach, the course is taught essentially as it was before
the introduction of statistical software, but using a com-
puter to speed up some of the calculations and to prepare
higher quality graphical displays. Perhaps the size of
the data sets will also be increased. We will refer to this
approach as statistical computation since the computer
serves primarily as a computational tool to replace pencil-
and-paper calculations and drawing plots manually.

In the second approach, more fundamental changes in
the course result from the introduction of the computer.
Some new topics are covered, some old topics are omit-
ted. Some old topics are treated in very different ways,
and perhaps at different points in the course. We will re-
fer to this approach as computational statistics because
the availability of computation is shaping how statistics is
done and taught. Computational statistics is a key com-
ponent of data science, defined as the ability to use data
to answer questions and communicate those results.

Students need to see aspects of
computation and data science
early and often to develop
deeper skills. Establishing
precursors in introductory
courses help them get started.

In practice, most courses will incorporate elements of
both statistical computation and computational statistics,
but the relative proportions may differ dramatically from
course to course. Where on the spectrum a course lies
will be depend on many factors including the goals of the
course, the availability of technology for student use, the
perspective of the text book used, and the comfort-level of
the instructor with both statistics and computation.

Among the various statistical software packages avail-
able, R is becoming increasingly popular. The recent addi-
tion of RStudio has made R both more powerful and more
accessible. Because R and RStudio are free, they have be-
come widely used in research and industry. Training in R
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and RStudio is often seen as an important additional skill
that a statistics course can develop. Furthermore, an in-
creasing number of instructors are using R for their own
statistical work, so it is natural for them to use it in their
teaching as well. At the same time, the development of R
and of RStudio (an optional interface and integrated de-
velopment environment for R) are making it easier and
easier to get started with R.

Information about the mosaic
package, including vignettes
demonstrating features and
supplementary materials (such
as this book) can be found at
https://cran.r-project.org/
web/packages/mosaic.

We developed the mosaic R package (available on
CRAN) to make certain aspects of statistical computation
and computational statistics simpler for beginners, with-
out limiting their ability to use more advanced features of
the language. The mosaic package includes a modelling
approach that uses the same general syntax to calculate
descriptive statistics, create graphics, and fit linear mod-
els.

https://cran.r-project.org/web/packages/mosaic
https://cran.r-project.org/web/packages/mosaic


1
Some Advice on Getting Started With R

Learning R is a gradual process, and getting off to a good
start goes a long way toward ensuring success. In this
chapter we discuss some strategies and tactics for getting
started teaching statistics with R. In subsequent chapters The mosaic package includes

a vignette outlining a possible
minimalist set of R commands
for teaching an introductory
course.

we provide more details about the (relatively few) R com-
mands that students need to know and some additional
information about R that is useful for instructors to know.
Along the way we present some of our favorite examples
that highlight the use of R, including some that can be
used very early in a course.

1.1 Strategies

Each instructor will choose to start his or her course dif-
ferently, but we offer the following strategies (followed
by some tactics and examples) that can serve as a guide
for starting the course in a way that prepares students for
success with R.

1. Start right away.

Do something with R on day 1. Do something else on
day 2. Have students do something by the end of week
1 at the latest.

2. Illustrate frequently.

Teaching Tip

RMarkdown provides a easy
way to create handouts or
slides for your students. See
R Markdown: Integrating a Re-
producible Analysis Tool into
Introductory Statistics by B
Baumer et al for more about
integrating RMarkdown into
your course. For those already
familiar with LATEX, there is
also knitr/LATEXintegration in
RStudio.

Have R running every class period and use it as
needed throughout the course so students can see
what R does. Preview topics by showing before ask-
ing students to do things.

3. Teach R as a language. (But don’t overdo it.)

http://arxiv.org/abs/1402.1894
http://arxiv.org/abs/1402.1894
http://arxiv.org/abs/1402.1894
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There is a bit of syntax to learn – so teach it explic-
itly.
• Emphasize that capitalization (and spelling) matter.
• Explain carefully (and repeatedly) the syntax of

functions.
Fortunately, the syntax is very straightforward. It
consists of a function name followed by an opening
parenthesis, followed by a comma-separated list of
arguments (which may be named), followed by a
closing parenthesis.

functionname ( name1=arg1, name2=arg2, ... )

Get students to think about what a function does
and what it needs to know to do its job. Generally,
the function name indicates what the function does.
The arguments provide the function with the neces-
sary information to do the task at hand.

• Every object in R has a type (class). Ask frequently:
What type of thing is this?
Students need to understand the difference between
a variable and a data frame and also that there are
different kinds of variables (factor for categorical
data and numeric for numerical data, for example).
Instructors and more advanced students will want
to know about vector and list objects.

Give more details in higher level courses.
Upper level students should learn more about user-

defined functions and language control structures such
as loops and conditionals. Students in introductory
courses don’t need to know as much about the lan-
guage.

4. “Less volume, more creativity." [Mike McCarthy, head
coach, Green Bay Packers] Note

This is one of the primary mo-
tivations behind our mosaic
package, which seeks to make
more things simpler and more
similar to each other so that
students can more easily be-
come independent, creative
users of R. But even if you don’t
choose to do things exactly the
way we do, we recommend
using “Less Volume, More Cre-
ativity" as a guideline.

Use a few methods frequently and students will
learn how to use them well, flexibly, even creatively.
Focus on a small number of data types: numerical
vectors, character strings, factors, and data frames.
Choose functions that employ a similar framework
and style to increase the ability of students to transfer
knowledge from one situation to another.

5. Find a way to have computers available for tests.
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It makes the test match the rest of the course and
is a great motivator for students to learn R. It also
changes what you can ask for and about on tests.

One of us first did this at the request of students
in an introductory statistics course who asked if there
was a way to use computers during the test “since that’s
how we do all the homework." He now has students bring
laptops to class for tests. Another of us has both in-
class (without computer) and out-of-class (with com-
puter) components to his assessment.

6. Rethink your course.
If you have taught computer-free or computer-light

courses in the past, you may need to rethink some
things. With ubiquitous computing, some things disap-
pear from your course:

• Reading statistical tables. Note

One of the main uses of calcula-
tors on the AP Statistics exams
is for the calculation of p-values
and related quantiles.

Does anyone still consult a table for values of
sin, or log? All three of us have sworn off the use of
tabulations of critical values of distributions (since
none of us use them in our professional work, why
would we teach this to students?)

• “Computational formulas".
Replace them with computation. Teach only the

most intuitive formulas. Focus on how they lead to
intuition and understanding, not computation.

• (Almost all) hand calculations.

At the same time, other things become possible that
were not before:

• Large data sets

• Beautiful plots

• Simulations and methods based on randomization
and resampling

• Quick computations

• Increased focus on concepts rather than calculations

Get your students to think that using the computer is
just part of how statistics is done, rather than an add-
on.

7. Keep the message as simple as possible and keep the
commands accordingly simple.

It is important not to get too
complicated too quickly. Early
on, we typically use default
settings and focus on the main
ideas. Later, we may introduce
fancier options as students
become comfortable with sim-
pler things (and often demand
more).
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Particularly when doing graphics, beware of dis-
tracting students with the sometimes intricate details
of beautifying for publication. If the default behavior is
good enough, go with it.

8. Anticipate computationally challenged students, but
be confident that you are leading them down the right
path.

Some students pick up R very easily. In every
course there will be a few students who struggle. To
help them, focus on diagnosing what they don’t know
and how to help them “get it”.

In our experience, the computer is often a fall guy
for other things the student does not understand. Be-
cause the computer gives immediate feedback, it re-
veals these misunderstandings. For example, if stu-
dents are confused about the distinctions among vari-
ables, statistics, and observational units, they will have
a difficult time providing the correct information to a
plotting function. The student may blame R, but that
is not the primary source of the difficulty. If you can
diagnose the true problem, you will improve their un-
derstanding of statistics and fix R difficulties simulta-
neously.

Teaching Tip

When introducing R code to
students, we emphasize the fol-
lowing questions: What do you
want R to do for you? and What
information must you provide, if
R is going to do that? The first
question generally determines
the function that will be used.
The second determines the
inputs to that function.

Even students with a solid understanding of the
statistical concepts will encounter R errors that they
cannot eliminate. Tell students to copy and paste R

Teaching Tip

Tell your students to copy and
paste error messages into email
rather than describe them
vaguely. It’s a big time saver
for everyone

code and error messages into email when they have
trouble. When you reply, explain how the error mes-
sage helped you diagnose their problem and help them
generalize your solution to other situations. See Chap-
ter 7 for some of the common error messages and what
they might indicate.

1.2 Tactics
Students must learn to see before
they can see to learn.1. Introduce Graphics Early.

Introduce graphics very early, so that students see
that they can get impressive output from simple com-
mands. Try to break away from their prior expectation
that there is a “steep learning curve."

Accept the defaults – don’t worry about the niceties
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(good labels, nice breaks on histograms, colors) too
early. Let them become comfortable with the basic
graphics commands and then play (make sure it feels
like play!) with fancying things up. In keeping with this advice,

most of the examples in this
book fall in the area of ex-
ploratory data analysis. The or-
ganization is chosen to develop
gradually anunderstanding of
R. See the companion volume A
Student’s Guide to R for a tour of
commands used in the primary
sorts analyses used in the first
two undergraduate statistics
courses. This companion vol-
ume is organized by types of
data analyses and presumes
some familiarity with the R
language.

Keep in mind that just because the graphs are easy
to make on the computer doesn’t mean your students
understand how to read the graphs. Use examples that
will help students develop good habits for visualizing
data.

2. Introduce Sampling and Randomization Early.
Since sampling drives much of the logic of statis-

tics, introduce the idea of a random sample very early,
and have students construct their own random sam-
ples. The phenomenon of a sampling distribution can
be introduced in an intuitive way, setting it up as a
topic for later discussion and analysis.



2
Getting Started with RStudio

RStudio is an integrated development environment (IDE)
for R that provides an alternative interface to R that has
several advantages over other the default R interfaces:

• RStudio runs on Mac, PC, and Linux machines and pro-
vides a simplified interface that looks and feels identical
on all of them.

The default interfaces for R are quite different on the
various platforms. This is a distractor for students and
adds an extra layer of support responsibility for the
instructor.

• RStudio can run in a web browser. Note

Using RStudio in a browser is
like Facebook for statistics.
Each time the user returns, the
previous session is restored and
they can resume work where
they left off. Users can login
from any device with internet
access.

In addition to stand-alone desktop versions, RStudio
can be set up as a server application that is accessed
via the internet. Installation is straightforward for
anyone with experience administering a Linux sys-
tem. Once set up at your institution, students can
start using RStudio by simply opening a website from a
browser and logging in. No additional installation or
configuration is required.

The web interface is nearly identical to the desk-
top version. As with other web services, users login Caution!

The desktop and server version
of RStudio are so similar that
if you run them both, you will
have to pay careful attention
to make sure you are working
in the one you intend to be
working in.

to access their account. If students logout and login in
again later, even on a different machine, their session
is restored and they can resume their analysis right
where they left off. With a little advanced set up, in-
structors can save the history of their classroom R use
and students can load those history files into their own
environment.

• RStudio provides support for reproducible research.
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RStudio makes it easy to include text, statistical
analysis (R code and R output), and graphical displays
all in the same document. The RMarkdown system
provides a simple markup language and renders the
results in HTML. The knitr/LATEX system allows users
to combine R and LATEX in the same document. The
reward for learning this more complicated system is
much finer control over the output format. Depending
on the level of the course, students can use either of
these for homework and projects. Note

To use Markdown or
knitr/LATEX requires that the
knitr package be installed on
your system. See Section 6.3
for instructions on installing
packages.

We typically introduce students to RMarkdown
very early, requiring students to use it for assignments
and reports. Handouts, exams, and books like this one
are produced using knitr/LATEX, and it is relatively
easy for interested students to migrate to knitr from
RMarkdown if they are interested.

• RStudio provides an integrated support for editing and
executing R code and documents.

• RStudio provides some useful functionality via a graph-
ical user interface.

RStudio is not a GUI for R, but it does provide a
GUI that simplifies things like installing and updating
packages; monitoring, saving and loading environ-
ments; importing and exporting data; browsing and
exporting graphics; and browsing files and documenta-
tion.

• RStudio provides access to the manipulate package.
The manipulate package provides a way to create

simple interactive graphical applications quickly and
easily.

While one can certainly use R without using RStudio,
RStudio makes a number of things easier and we highly
recommend using RStudio. Furthermore, since RStudio is
in active development, we fully expect more useful fea-
tures in the future.

2.1 Setting up R and RStudio

R can be obtained from http://cran.r-project.org/.
Download and installation are pretty straightforward for

http://cran.r-project.org/
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Mac, PC, or Linux machines. RStudio is available from
http://www.rstudio.org/. RStudio can be installed as a
desktop (laptop) application or as a server application
that is accessible to others via the Internet.

2.1.1 RStudio in the cloud

We primarily use an online version of RStudio. RStudio is
a innovative and powerful interface to R that runs in a
web browser or on your local machine. Running in the
browser has the advantage that you don’t have to install
or configure anything. Just login and you are good to
go. Futhermore, RStudio will “remember” what you were
doing so that each time you login (even on a different
machine) you can pick up right where you left off. This
is “R in the cloud" and works a bit like GoogleDocs or
Facebook for R.

Your system administrator will likely need to set up
your own installation of RStudio for your institution,
but we can attest that the process is straightforward and
greatly facilitates student and faculty use.

2.1.2 RStudio on your computer

There is also a stand-alone version of the RStudio envi-
ronment that you can install on your desktop or laptop
machine. This can be downloaded from http://www.
rstudio.org/. This assumes that you have a version of
R installed on your computer (see below for instructions
to download this from CRAN). Even if your students are
primarily or exclusively using the server version of RStu-
dio in a browser, instructors may like to have the security
blanket of a version that does not require access to the
internet. But be warned, the two version look so similar
that you may occasionally find yourself working in one of
them when you intend to be in the other.

2.1.3 Getting R from CRAN

CRAN is the Comprehensive R Archive Network (http:
//cran.r-project.org/). You can download free versions
of R for PC, Mac, and Linux from CRAN. (If you use the

http://www.rstudio.org/
http://www.rstudio.org/
http://www.rstudio.org/
http://cran.r-project.org/
http://cran.r-project.org/
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RStudio stand-alone version, you also need to install R
this way first.) All the instructions for downloading and
installing are on CRAN. Just follow the appropriate in-
structions for your platform.

2.1.4 Running RStudio the first time

Once you have launched the desktop version of RStudio or
logged in to an RStudio server, you will see something like
the following.

Notice that RStudio divides its world into four panels.
Several of the panels are further subdivided into multi-
ple tabs. Which tabs appear in which panels can be cus-
tomized by the user. Teaching Tip

We find it convenient to put the
console in the upper left rather
than the default location (lower
left) so that students can see it
better when we project our R
session in class.

2.2 Using R as a Calculator in the Console

R can do much more than a simple calculator, and we will
introduce additional features in due time. But performing
simple calculations in R is a good way to begin learning
the features of RStudio.

Commands entered in the Console tab are immediately
executed by R. A good way to familiarize yourself with
the console is to do some simple calculator-like compu-
tations. Most of this will work just like you would expect
from a typical calculator. Try typing the following com-
mands in the console panel.
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5 + 3

[1] 8

15.3 * 23.4

[1] 358

sqrt(16) # square root

[1] 4

This last example demonstrates how functions are
called within R as well as the use of comments. Com-
ments are prefaced with the # character. Comments can
be very helpful when writing scripts with multiple com-
mands or to annotate example code for your students.

You can save values to named variables for later reuse.

product = 15.3 * 23.4 # save result

product # display the result

[1] 358

product <- 15.3 * 23.4 # <- instead of =

product

[1] 358

Teaching Tip

It’s best to settle on using one
or the other of the right-to-left
assignment operators rather
than to switch back and forth.
Here we will adopt the arrow
operator because it represents
visually what is happening in
an assignment, because it can
also be used in a left to right
manner, and because it makes
a clear distinction between
the assignment operator, the
use of = to provide values to
arguments of functions, and the
use of == to test for equality.

Once variables are defined, they can be referenced in
other operations and functions.

0.5 * product # half of the product

[1] 179

log(product) # (natural) log of the product

[1] 5.88

log10(product) # base 10 log of the product

[1] 2.55

log2(product) # base 2 log of the product

[1] 8.48

log(product, base=2) # another way for base 2 log

[1] 8.48
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The semi-colon can be used to place multiple com-
mands on one line. One frequent use of this is to save and
print a value all in one go:

# store and show result

product <- 15.3 * 23.4; product

[1] 358

2.3 Working with Files

2.3.1 R Script Files

As an alternative, R commands can be stored in a file.
RStudio provides an integrated editor for editing these
files and facilitates executing some or all of the com-
mands. To create a file, select File, then New File, then R
Script from the RStudio menu. A file editor tab will open
in the Source panel. R code can be entered here, and but-
tons and menu items are provided to run all the code
(called sourcing the file) or to run the code on a single
line or in a selected section of the file.

2.3.2 RMarkdown, and knitr/LATEX

A third alternative is to take advantage of RStudio’s sup-
port for reproducible research. If you already know LATEX,
you will want to investigate the knitr/LATEX capabili-
ties. For those who do not already know LATEX, the sim-
pler RMarkdown system provides an easy entry into the
world of reproducible research methods. It also provides
a good facility for students to create homework and re-
ports that include text, R code, R output, and graphics.

To create a new RMarkdown file, select File, then New
File, then RMarkdown. The file will be opened with a short
template document that illustrates the mark up language.
If you can click on From Template before creating the file,
you will be given a list of template documents available
in packages. If the the mosaic package is loaded, this list
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will include templates that make sure the mosaic pack-
age is loaded and change the defaults size for plots to
be somewhat smaller than the generic RStudio default.
The fancy version demonstrates many of the features of
RMarkdown. (The RStudio web site includes extensive tu-
torials on using RMarkdown that demonstrate a wider
range of features.) The plain templates are designed to
quickly create new documents starting from a nearly
blank slate.

The process of running the R code and combining
text, R code, output, and graphics into a single file is
called “knitting". Click on Knit to convert the RMarkdown
document into an HTML, PDF, or Word file.

It is important to remember that unlike R scripts,
which are executed in the console and have access to the
console environment, RMarkdown and knitr/LATEX files
do not have access to the console environment. This Caution!

RMarkdown, and knitr/LATEX
files do not have access to the
console environment, so the
code in them must be self-
contained.

is a good feature because it forces the files to be self-
contained, which makes them transferable and respects
good reproducible research practices. But beginners, es-
pecially if they adopt a strategy of trying things out in the
console and copying and pasting successful code from the
console to their file, will often create files that are incom-
plete and therefore do not compile correctly.

One good strategy for getting students to use RMark-
down is to provide them with an example document that
includes the boiler plate you want them to use, loads any
R packages that they will need, sets any knitr or R set-
tings they way you prefer them, and has placeholders for
the work you want them to do.

2.4 The Other Panels and Tabs

2.4.1 The History Tab

As commands are entered in the console, they appear in
the History tab. These histories can be saved and loaded,
there is a search feature to locate previous commands,
and individual lines or sections can be transfered back
to the console. Keeping the History tab open will allow
students to look back and see the previous several com-
mands. This can be especially useful when commands
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produce a fair amount of output and so scroll off the
screen rapidly. History files can be saved and distributed
to students so that they can rerun the code illustrated in
class. (Before saving the history, you can remove any lines
that you don’t want saved to spare your students repeat-
ing all of your typing errors.)

An alternative is to produce RMarkdown files in class
and make those available. This provides a better mecha-
nism for adding additional comments or instructions.

2.4.2 Communication between tabs

RStudio provides several ways to move R code between
tabs. Pressing the Run button in the editing panel for an R
script or RMarkdown or other file will copy lines of code
into the Console and run them.

2.4.3 The Files Tab

The Files tab provides a simple file manager. It can be
navigated in familiar ways and used to open, move, re-
name, and delete files. In the browser version of RStudio,
the Files tab also provides a file upload utility for moving
files from the local machine to the server. In RMarkdown
and knitr files one can also run the code in a particular
chunk or in all of the chunks in a file. Each of these fea-
tures makes it easy to try out code “live” while creating a
document that keeps a record of the code.

In the reverse direction, code from the history can be
copied either back into the console to run them again
(perhaps after editing) or into one of the file editing tabs
for inclusion in a file.

2.4.4 The Help Tab

The Help tab is where RStudio displays R help files. These
can be searched and navigated in the Help tab. You can
also open a help file using the ? operator in the console.
For example

?log

Will provide the help file for the logarithm function.
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2.4.5 The Environment Tab

The Environment tab shows the objects available to the con-
sole. These are subdivided into data, values (non-data
frame, non-function objects) and functions. The broom
icon can be used to remove all objects from the environ-
ment, and it is good to do this from time to time, espe-
cially when running in RStudio server or if you choose to
save the environment when shutting down RStudio since
in these cases objects can stay in the environment essen-
tially indefinitely.

2.4.6 The Plots Tab
If you haven’t been entering
these example commands at
your console, go back and do it!

Plots created in the console are displayed in the Plots tab.
For example,

# this will make lattice graphics available

require(mosaic)

xyplot( births ~ dayofyear, data=Births78)
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will display the number of births in the United States for
each day in 1978. From the Plots tab, you can navigate to
previous plots and also export plots in various formats
or copy them to the cliboard after interactively resizing
them.

2.4.7 The Packages Tab

Much of the functionality of R is located in packages,
many of which can be obtained from a central clearing
house called CRAN (Comprehensive R Archive Network).
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The Packages tab facilitates installing and loading pack-
ages. It will also allow you to search for packages that
have been updated since you installed them.



3
Using R Early in the Course

This chapter includes some of our favorite activities for
early in the course. These activities simultaneously pro-
vide the students with a first glimpse of R and an intro-
duction to some major themes of the course. Used this
way, it is not necessary for students to understand the de-
tails of the R code. Instead have them focus on the ques-
tions being asked on how the results presented shed light
on the answers to these questions.

3.1 Coins and Cups: The Lady Tasting Tea
This section is a slightly mod-
ified version of a handout one
of the authors has given Intro
Stats students on Day 1 after
going through the activity as a
class discussion.

There is a famous story about a lady who claimed that
tea with milk tasted different depending on whether the
milk was added to the tea or the tea added to the milk.
The story is famous because of the setting in which she
made this claim. She was attending a party in Cambridge,
England, in the 1920s. Also in attendance were a number
of university dons and their wives. The scientists in at-
tendance scoffed at the woman and her claim. What, after
all, could be the difference?

All the scientists but one, that is. Rather than simply
dismiss the woman’s claim, he proposed that they decide
how one should test the claim. The tenor of the conversa-
tion changed at this suggestion, and the scientists began
to discuss how the claim should be tested. Within a few
minutes cups of tea with milk had been prepared and
presented to the woman for tasting.

At this point, you may be wondering who the innova-
tive scientist was and what the results of the experiment
were. The scientist was R. A. Fisher, who first described
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this situation as a pedagogical example in his 1925 book
on statistical methodology 1. Fisher developed statistical 1 R. A. Fisher. Statistical Methods

for Research Workers. Oliver &
Boyd, 1925

methods that are among the most important and widely
used methods to this day, and most of his applications
were biological.

You might also be curious about how the experiment
came out. How many cups of tea were prepared? How
many did the woman correctly identify? What was the
conclusion?

Fisher never says. In his book he is interested in the
method, not the particular results. But we can use this
setting to introduce some key ideas in statistics.

Let’s suppose we decide to test the lady with ten cups
of tea. We’ll flip a coin to decide which way to prepare
the cups. If we flip a head, we will pour the milk in first;
if tails, we put the tea in first. Then we present the ten
cups to the lady and have her state which ones she thinks
were prepared each way.

It is easy to give her a score (9 out of 10, or 7 out of
10, or whatever it happens to be). It is trickier to figure Teaching Tip

The score is setting up the idea
of a test statistic for later, but
there is no need to introduce
that terminology on day 1.

out what to do with her score. Even if she is just guessing
and has no idea, she could get lucky and get quite a few
correct – maybe even all 10. But how likely is that?

Let’s try an experiment. I’ll flip 10 coins. You guess
which are heads and which are tails, and we’ll see how
you do. Teaching Tip

Have each student make a
guess by writing down a se-
quence of 10 H’s or T’s while
you flip the coin behind a bar-
rier so that the students cannot
see the results.

Comparing with your classmates, we will undoubt-
edly see that some of you did better and others worse.

Now let’s suppose the lady gets 9 out of 10 correct.
That’s not perfect, but it is better than we would expect
for someone who was just guessing. On the other hand,
it is not impossible to get 9 out of 10 just by guessing. So
here is Fisher’s great idea: Let’s figure out how hard it
is to get 9 out of 10 by guessing. If it’s not so hard to do,
then perhaps that’s just what happened, so we won’t be
too impressed with the lady’s tea tasting ability. On the
other hand, if it is really unusual to get 9 out of 10 correct
by guessing, then we will have some evidence that she
must be able to tell something.

But how do we figure out how unusual it is to get 9

out of 10 just by guessing? We’ll learn another method
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later, but for now, let’s just flip a bunch of coins and keep
track. If the lady is just guessing, she might as well be
flipping a coin.

So here’s the plan. We’ll flip 10 coins. We’ll call the
heads correct guesses and the tails incorrect guesses.
Then we’ll flip 10 more coins, and 10 more, and 10 more,
and . . . . That would get pretty tedious. Fortunately, com-
puters are good at tedious things, so we’ll let the com-
puter do the flipping for us.

The rflip() function can flip one coin

Note

There is a subtle switch here.
Before we were asking how
many of the students H’s and
T’s matched the flipped coin.
Now we are using H to sim-
ulate a correct guess and T to
simulate an incorrect guess.
This makes simulating easier.

require(mosaic)

rflip()

Flipping 1 coin [ Prob(Heads) = 0.5 ] ...

T

Number of Heads: 0 [Proportion Heads: 0]

or a number of coins

rflip(10)

Flipping 10 coins [ Prob(Heads) = 0.5 ] ...

H T H H T H H H T H

Number of Heads: 7 [Proportion Heads: 0.7]

Typing rflip(10) a bunch of times is almost as te-
dious as flipping all those coins. But it is not too hard to
tell R to do() this a bunch of times. Note

Notice that do() is clever about
what information it records.
Rather than recording all of
the individual tosses, it is only
recording the number of flips,
the number of heads, and the
number of tails.

do(3) * rflip(10)

n heads tails prop

1 10 8 2 0.8

2 10 4 6 0.4

3 10 1 9 0.1
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Now let’s get R to do() it for us 10,000 times and make a
table of the results.

Teaching Tip

There is always the question
of how many simulations to
perform. This is a trade-off
between speed and accuracy.
For simple things, one can
easily perform 10,000 or more
simulations live in class. For
more complicated things (that
might require fitting a model
and extracting information
from it at each iteration) you
might prefer a smaller number
for live demonstrations.

When you cover inference
for a proportion, it is a good
idea to use those methods to
revisit the question of how
many replications are required
in that context.

# store the results of 10000 simulated ladies

random.ladies <- do(10000) * rflip(10)

tally(~heads, data=random.ladies)

0 1 2 3 4 5 6 7 8 9 10

5 102 467 1203 2048 2470 2035 1140 415 108 7

# We can also display a table using percentages

tally(~heads, data=random.ladies, format="prop")

0 1 2 3 4 5 6 7

0.0005 0.0102 0.0467 0.1203 0.2048 0.2470 0.2035 0.1140

8 9 10

0.0415 0.0108 0.0007

We can display this table graphically using a plot
called a histogram with bins of width 1. Note

The mosaic package adds
some additional features to
histogram(). In particular, the
width and center arguments,
which make it easier to control
the bins, are only available if
you are using the mosaic pack-
age.

histogram(~ heads, data=random.ladies, width=1)
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You might be surprised to see that the number of cor-
rect guesses is exactly 5 (half of the 10 tries) only 25%
of the time. But most of the results are quite close to 5

correct. For example, 67% of the results are 4, 5, or 6, for
example. About 90% of the results are between 3 and 7

(inclusive). But getting 8 correct is a bit unusual, and get-
ting 9 or 10 correct is even more unusual.
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So what do we conclude? It is possible that the lady
could get 9 or 10 correct just by guessing, but it is not
very likely (it only happened in about 1.2% of our simula-
tions). So one of two things must be true:

• The lady got unusually “lucky", or

• The lady is not just guessing.

Although Fisher did not say how the experiment came
out, others have reported that the lady correctly identified
all 10 cups! 2 2 D. Salsburg. The Lady Tasting

Tea: How statistics revolutionized
science in the twentieth century.
W.H. Freeman, New York, 2001

A different design

Suppose instead that we prepare five cups each way
(and that the woman tasting knows this). We give her five
cards labeled “milk first”, and she must place them next
to the cups that had the milked poured first. How does
this design change things?

We could simulate this by shuffling a deck of 10 cards
and dealing five of them. Note

The use of factor() here lets R
know that the possible values
are ‘M’ and ‘T’, even when only
one or the other appears in a
given random sample.

cards <-

factor(c("M","M","M","M","M","T","T","T","T","T"))

tally(~deal(cards, 5))

M T

3 2

results <- do(10000) * tally(~deal(cards, 5))

tally(~ M, data=results)

0 1 2 3 4 5

44 993 3966 3927 1028 42

tally(~ M, data=results, format="prop")

0 1 2 3 4 5

0.0044 0.0993 0.3966 0.3927 0.1028 0.0042

tally(~ M, data=results, format="perc")

0 1 2 3 4 5

0.44 9.93 39.66 39.27 10.28 0.42



start teaching with r 31

3.2 Births by Day

The Births78 data set contains the number of births in
the United States for each day of 1978. A scatter plot of Note

The use of the phrase “depends
on” is intentional. Later we will
emphasize how y x can often
be interpreted as “y depends on
x”.

births by day of year reveals some interesting patterns.
Let’s see how the number of births depends on the day of
the year.

xyplot(births ~ dayofyear, data=Births78)

dayofyear

bi
rt

hs

7000

8000

9000

10000

0 100 200 300

Teaching Tip

The plot could also be made us-
ing date. For general purposes,
this is probably the better plot
to make, but using dayofyear
forces students to think more
about what the x-axis means.When shown this image, students should readily be

able to describe two patterns in the data; they should
notice both the rise and fall over the course of the year
and the two “parallel waves". Many students will be Teaching Tip

This can make a good “think-
pair-share” activity. Have stu-
dents come up with possible
explanations, then discuss these
explanations with a partner.
Finally, have some of the pairs
share their explanations with
the entire class.

able to come up with conjectures about the peaks and
valleys, but they often struggle to correctly interpret the
parallel waves. Having them make conjectures about this
will quickly reveal whether they are correctly interpreting
the plot.

One conjecture about the parallel waves can be checked
using the data at hand. If we display each day of the
week with a different symbol or color, we see that there
are fewer births on weekends – likely because scheduled
births are less likely on weekends. There are a handful of
exceptions which are readily seen to be holidays.
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Teaching Tip

The handful of exceptions are
easier to see if we “connect the
dots”. See Section 4.6.1.

require(mosaicData) # load mosaic data sets

xyplot(births ~ dayofyear, data=Births78,

groups=wday,

auto.key=list(space="right"))
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A discussion of this or some other data set that can
be explored through graphical displays is a good way to
demonstrate “statistical curiosity", to illustrate the power
of R for creating graphs, and to introduce the importance
of covariates in statistical analysis.

Visualization has been called
the “gateway drug” to statis-
tics. It can be a great way to
lure students into statistics –
and away from their graphing
calculators.

3.3 SAT and Confounding

The SAT data set contains information about the link be-
tween SAT scores and measures of educational expendi-
tures. Students are often surprised to see that states that
spend more on education do worse on the SAT.
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xyplot(sat ~ expend, data=SAT)
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The implication, that spending less might give better
results, is not justified. Expenditures are confounded with
the proportion of students who take the exam, and scores
are higher in states where fewer students take the exam.

xyplot(expend ~ frac, data=SAT)

xyplot(sat ~ frac, data=SAT)
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It is interesting to look at the original plot if we place
the states into two groups depending on whether more or
fewer than 40% of students take the SAT:

SAT <- mutate(SAT,

fracGroup = derivedFactor(

hi = (frac > 40),

lo = (frac <=40) ))

xyplot(expend ~ frac, data=SAT)

xyplot( sat ~ expend | fracGroup , data=SAT,

type=c("p","r") )

xyplot( sat ~ expend, groups = fracGroup , data=SAT,

type=c("p","r") )
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This example can be used to warn against interpreting
relationships causally and to illustrate the importance of
considering covariates.

3.4 Mites and Wilt Disease

This example shows how to build up to statistical inference
from first principles.

Researchers suspect that attack of a plant by one or-
ganism induces resistance to subsequent attack by a dif-
ferent organism. Individually potted cotton plants were
randomly allocated to two groups: infestation by spider
mites or no infestation. After two weeks the mites were
dutifully removed by a conscientious research assistant,
and both groups were inoculated with Verticillium, a fun-
gus that causes Wilt disease. The researchers were hoping
the data would shed light on the following big question:

Is there a relationship between infestation and Wilt
disease?

The accompanying table shows a cross tabulation the
number of plants that developed symptoms of Wilt dis-
ease.
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tally(outcome ~ treatment, data = Mites, margins = TRUE)

treatment

outcome mites no mites

no wilt 15 4

wilt 11 17

Total 26 21

Some questions for students:

1. What do you think is the explanatory variable? Re-
sponse variable?

2. What proportion of the plants in the study with mites
developed Wilt disease?

3. What proportion of the plants in the study with no
mites developed Wilt disease?

4. Relative risk is the ratio of two risk proportions. What
is the relative risk of developing Wilt disease, compar-
ing mites to no mites?

5. If there were no association between mites and Wilt
disease, what would the relative risk be (in the popu-
lation as a whole)? How close is the relative risk com-
puted from the data to this value?

6. Let X be the number of plants in the no mites group
that did not develop Wilt disease. What are the possi-
ble values for X?

7. Assuming a population relative risk of 1, give two pos-
sible values for X that would be more unusual than the
value for these data?

Questions 6-7 can be addressed using cards:
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Physical Simulation
1. Select 47 cards from your deck: 26 red (mites!) and 21 black

2. Shuffle the cards well

3. Deal out 19 cards, these represent the 19 plants without Wilt disease.

4. Count the number of black cards among those 19. What do these represent?

5. Repeat steps 2 –4, five times.

Students can pool their results by recording them in
a table on the board at the front of the room. Then have
students process the results by answering the following
questions.

8. How many black cards would we expect (on average)?
Why?

9. What did we observe?

10. How would we summarize these results? What is the
big idea?

Once the simulation with cards has been completed,
we can use R to do many more simulations very quickly.
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Computational Simulation
tally(outcome ~ treatment, data=Mites)

treatment

outcome mites no mites

no wilt 15 4

wilt 11 17

X <- tally(outcome ~ treatment, data=Mites)[1,1]; X

[1] 15

nullDist <- do(1000) *
tally(outcome ~ shuffle(treatment), data=Mites)[1,1]

histogram(~ result, data=nullDist, width=1,

type="density", fit="normal", v=15)

result
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Less Volume, More Creativity

A lot of times you end up putting in a lot more vol-
ume, because you are teaching fundamentals and you
are teaching concepts that you need to put in, but you
may not necessarily use because they are building blocks
for other concepts and variations that will come off of
that ... In the offseason you have a chance to take a step
back and tailor it more specifically towards your team
and towards your players.

– Mike McCarthy, Head Coach, Green Bay Packers

Perfection is achieved, not when there is nothing more to
add, but when there is nothing left to take away.

– Antoine de Saint-Exupery, writer, poet, aviator

Mike McCarthy, head coach of
the Green Bay Packers football
team uses “Less Volume, More
Creativity" as a mantra for his
coaching staff as they prepare
the game plan each week. As
an illustration of the principle
at work, when asked by a fan
how many pass plays the team
prepares for a given opponent,
the coach answered, “When
I first got into the NFL we
had 150 passes in our game
plan. I’ve put a sign on all of
the coordinators’ doors – Less
volume, more creativity. We
function with more concepts
with less volume. [Now] We’re
more around 50 [passes] in a
game plan.

One key to successfully introducing R is finding a set of
commands that is

• small,

• coherent, and

• powerful.

This chapter provides an extensive example of this
“Less Volume, More Creativity" approach. The mosaic
package (combined with the lattice package and other
core R functionality) provides a simple yet powerful
framework that equips students to produce all of the

• numerical summaries,

• graphical summaries, and

• linear models
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needed in an introductory course. By presenting this as
one master template with variations, we emphasize the
similarity among these commands and reduce the cogni-
tive load for students. In our experience, this has made R
much more approachable and enjoyable for students and
their instructors.

4.1 The mosaic package and the formula tem-
plate

Much of the early work on the mosaic package centered
on producing a minimal set of R commands that could
provide students with everything need for introductory
statistics without overwhelming students with too many
commands. One of the mosaic package vignettes includes
a document describing just such a set of commands.

Much of this is built off the following template that is
used repeatedly(

∼ , data =
)

The template is used by filling in the boxes. It helps to
give each box a name:

goal
(

y ∼ x , data = mydata
)

Teaching Tip

After introducing this template,
you might quiz students to
make sure they have learned
it. This will also emphasize its
importance.

The template has a bit more flexibility than we have
indicated. Sometimes the y is not needed:

goal( ~ x, data=mydata )

The formula may also include a third part

goal( y ~ x | z , data=mydata )

We can unify all of these into one form:

goal( formula , data=mydata )

The template can be applied to create numerical sum-
maries, graphical summaries, or model fits by answering
two questions and using the answers to fill in the slots of
the template:
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1. What do you want R to do?

This is the goal.

2. What must R know to do that?

These are the inputs to the function. For numerical
summaries, graphical summaries, and model fits, we
typically need to specify the variables involved and the
data frame in which they are stored.

4.2 Graphical summaries of data

Teaching Tip

We recommend showing some
plots on the first day and hav-
ing students generate their own
graphs before the end of the
first week.Graphical summaries are an important and eye-catching

way to demonstrate the power and flexibility of our tem-
plate. We like to introduce students to graphical sum-
maries early in the course. This gives the students access
to functionality where R really shines (and is certainly
much better than a hand-held calculator). It also begins
to develop their ability to interpret graphical represen-
tations of data, to think about distributions, and to pose
statistical questions.

More Info

We are often asked about the
other graphics systems, espe-
cially ggplot2 graphics. In our
experience, lattice makes it
easier for beginners to create
a wide variety of more or less
“standard” plots – including
the ability to represent multiple
variables at once. ggplot2, on
the other hand, makes it easier
to generate custom plots or to
combine plot components. Each
has its place, and we use both
systems. But for beginners, we
typically emphasize lattice.

The new ggvis package, by
the same author as ggplot2
adds interactivity and speed to
the strengths of ggplot2.

There are several ways to make graphs in R. One ap-
proach is a system called lattice graphics. Whenever
the mosaic package is loaded, the lattice package is also
loaded. One of the attractive aspects of lattice plots is
that they make use of the same template we will use for
numerical summaries and linear models.

4.2.1 Graphical summaries of two variables

A first example: Making a scatter plot

As an example, let’s create the following plot, which
shows the number of births in the United States for each
day in 1978.
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Teaching Tip

This plot can make an inter-
esting discussion starter early
in a course. Ask students to
conjecture explanations for the
patterns they observe in the
plots. Their answers will reveal
whether they are interpreting
the plot correctly.

1. What is the goal?

We want a scatter plot. The function that creates scatter
plots is called xyplot(), so this will go into the goal
slot of our template.

2. What does R need to know?
R needs to know which variable goes where and where
to find the variables. In this case, the data are stored in
the Births78 data frame:

head(Births78)

date births dayofyear wday

1 1978-01-01 7701 1 Sun

2 1978-01-02 7527 2 Mon

3 1978-01-03 8825 3 Tues

4 1978-01-04 8859 4 Wed

5 1978-01-05 9043 5 Thurs

6 1978-01-06 9208 6 Fri

We want to put the number of births (births) along
the y-axis and the day of the year (date) along the x-
axis.

Putting this all together, we get the following command

xyplot(births ~ date, data=Births78)
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Another Example: Boxplots

Now let’s create this plot, which shows boxplots of
age for each of three substances abused by participants in
the Health Evaluation and Linkage to Primary Care random-
ized clinical trial. More Info

You can find out more about
the HELPrct data set using
the help command: ?HELPrct.
This will provide you with the
codebook for the data and links
to the original source.

There are also a number
of functions that allow us to
inspect the contents of a data
frame. Among our favorites
are inspect(), glimpse(), and
head().
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The data we need are in the HELPrct data frame, from
which we want to display variables age and substance on
the y- and x-axes. According to our template, the com-
mand to create this plot has the form

goal(age ~ substance, data=HELPrct)

The only additional information we need is the name
of the function that creates boxplots. That function is
bwplot(). So we can create the plot with

bwplot(age ~ substance, data=HELPrct)

To make the boxplots horizontal instead of vertical,
reverse the roles of age and substance:

bwplot(substance ~ age, data=HELPrct)

age

alcohol

cocaine

heroin

20 30 40 50 60
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More Info

You may be wondering about
plots for two categorical vari-
ables. A commonly used plot
for this is a segmented bar
graph. We will treat this as a
augmented version of a simple
bar graph, which is a graphical
summary of one categorical
variable.

Another plot that can be
used to display two (or more)
categorical variables is a mosaic
plot. The lattice package does
not include mosaic plots, but
the vcd package provides a
mosaic() function that creates
mosaic plots.

4.2.2 Graphical summaries of one variable

If we want to make a plot that involves only one variable,
we simply omit the y-part of the formula. For example, a
histogram like
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can be made with Caution!
It is important to note that
when there is only one variable
it is on the right side of the
formula.

Teaching Tip

Tell students that because R
is computing the y values, we
don’t need to provide them.
This isn’t exactly the reason
why things are this way, but it
helps them remember.

histogram( ~ age, data=HELPrct)

Introducing width and center
here is perhaps a violation of
our usual policy of accepting
defaults and saving options for
later. But it is important that
histogram bins be chosen ap-
propriately, and no algorithmic
default works well for all data
sets. We encourage students to
make several histograms and
to experiment with center and
especially width.

The mosaic package adds some extra functionality to
histogram() to make it easier to specify the bins used. In
particular, the options width and center (default is 0) can
be used to define the width of the bins and the center of
one of the bins. For example, to create a histogram with
bins that are 5 years wide we can use width=5, and we
can shift the bins left and right by providing a value for
center.

Note

center need not be contained
in the bins that are displayed.
So to get bins with edges “on
the 0’s and 5’s”, we can set the
center to 2.5, regardless of the
range of the data.

histogram( ~ age, data=HELPrct, width=5)

histogram( ~ age, data=HELPrct, width=5, center=2.5)
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There is enough data here to use a bin for each integer if
we like. Because the default value of center is 0, setting
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width to 1 centers the bins on the integers, avoiding po-
tential confusion about which edge is included in the bin.

histogram( ~ age, data=HELPrct, width=1)
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Additional plots of a single quantitative variable are illus-
trated in Section sec:paletteOfPlots.

For a single categorical variable, we can make a bar
graph for a categorical variable using bargraph() in place
of histogram(). Since formulas are required to have a
right-hand side, horizontal bar graphs are produced us-
ing horizontal = TRUE. More Info

The bargraph() function is not
in the lattice package but
in the mosaic package. The
lattice function barchart()
creates bar graphs from sum-
marized data; bargraph() takes
care of creating this summary
data and then uses barchart()
to create the plot.

bargraph( ~ substance, data=HELPrct)

bargraph( ~ substance, data=HELPrct, horizontal=TRUE)
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4.2.3 A palette of plots
More Info

If you are unfamiliar with some
of the plots, like ashplots and
frequency polygons, keep read-
ing. We have more to say about
them shortly.

The power of the template is that we can now make many
different kinds of plots by mimicking the examples above
but replacing the goal.

histogram( ~ age, data=HELPrct)

freqpolygon( ~ age, data=HELPrct)
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dotPlot( ~ age, data=HELPrct, width=1)

ashplot( ~ age, data=HELPrct, width=1)

densityplot( ~ age, data=HELPrct)

qqmath( ~ age, data=HELPrct)

bwplot( ~ age, data=HELPrct)

bwplot( ~ age, data=HELPrct, pch = "|")
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Note

If you prefer the more tradi-
tional boxplot display with
a line at the median rather
than a dot, you can make that
the default behavior with
trellis.par.set(box.dot =
list(pch = "|")).

Some people prefer the more traditional boxplot display
with a line at the median rather than a dot. We can make
this the default behavior using

trellis.par.set(box.dot = list(pch = "|"))
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For one categorical variable, we can use a bar graph. Note

The lattice package does not
supply a function for creating
pie charts. This is no great loss
since it is generally harder to
make comparisons using a pie
chart.

bargraph( ~ sex, data=HELPrct) # categorical variable
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Two-variable plots are also very similar.

xyplot( width ~ length, data=KidsFeet) # 2 quantitative vars

plotPoints( width ~ length, data=KidsFeet) # mosaic alternative

bwplot(length ~ sex, data=KidsFeet) # 1 cat; 1 quant

bwplot( sex ~ length, data=KidsFeet) # reverse roles
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Caution!
There is also a function
dotPlot() (with a capital P).
Note that dotplot() produces a
very different kind of plot from
that produced by dotPlot().

The lattice package also provides the stripplot()
and dotplot() functions which can be used for one-
dimensional scatter plots. These work reasonably well
for small data sets but are of limited utility for larger data
sets.

stripplot( ~ length, data=KidsFeet)

dotplot( ~ length, data=KidsFeet)
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length
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These and xyplot() or plotPoints() can also be used Teaching Tip

We generally don’t introduce
dotplot() and stripplot()
to students but simply use
xyplot() or plotPoints().

with one quantitative variable and one categorical vari-
able.

xyplot(sex ~ length, data=KidsFeet)

plotPoints(sex ~ length, data=KidsFeet)

stripplot(sex ~ length, data=KidsFeet)

dotplot(sex ~ length, data=KidsFeet)
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4.2.4 Groups and sub-plots

We can add additional variables to our plots either by
overlaying multiple plots or by placing multiple plots
next to each other in a grid. To overlay plots, we add an
extra argument to our template using groups = , and to
create sub-plots (called panels in lattice and facets in
ggplot2 graphics) using a formula of the form

y ~ x | z

For example, we can overlay density plots of age for
each substance group in separate panels for each sex:
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densityplot( ~ age | sex, data=HELPrct,

groups=substance,

auto.key=TRUE)
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auto.key=TRUE adds a simple legend so we can tell which
of the overlaid curves is which.

4.3 Numerical Summaries
Note

The important thing to notice
in this section is how little there
is to learn once you know how
to make plots. Simply change
the plot name to a summary
statistic name and your done.

Numerical summaries can be created in the same way,
we simply replace the plot name with the name of the
numerical summary we desire. Nothing else changes; a
mean and a histogram each summarise a single variable,
so exchanging histogram() for mean() gives us the nu-
merical summary we desire.

histogram( ~ age, data=HELPrct)

mean( ~ age, data=HELPrct)

[1] 35.7
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More Info

To see the full list of these
formula-aware numerical
summary functions, use
help(favstats).
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The mosaic package includes formula-aware ver-
sions of several numerical summaries, including mean(),
sd(), var(), min(), max(), sum(), IQR(). In addition,
the favstats() function computes many of our favorite
statistics all at once:

favstats( ~ age, data=HELPrct)

min Q1 median Q3 max mean sd n missing

19 30 35 40 60 35.7 7.71 453 0

The tally() function can be used to count cases.

tally( ~ sex, data=HELPrct)

female male

107 346

tally( ~ substance, data=HELPrct)

alcohol cocaine heroin

177 152 124

Sometimes it is more convenient to display proportions or
percents.

tally( ~ substance, data=HELPrct, format="percent")

alcohol cocaine heroin

39.1 33.6 27.4

tally( ~ substance, data=HELPrct, format="proportion")

alcohol cocaine heroin

0.391 0.336 0.274

Summary statistics can be computed separately for
multiple subsets of a data set. This is analogous to plot-
ting multiple variables and can be thought about in three
ways. Each of these computes the same value.
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# age dependant on substance

sd( age ~ substance, data=HELPrct)

alcohol cocaine heroin

7.65 6.69 7.99

# age separately for each substance

sd( ~ age | substance, data=HELPrct)

alcohol cocaine heroin

7.65 6.69 7.99

# age grouped by substance

sd( ~ age, groups=substance, data=HELPrct)

alcohol cocaine heroin

7.65 6.69 7.99

The favstats() function can compute several numerical
summaries for each subset

favstats(age ~ substance, data=HELPrct)

substance min Q1 median Q3 max mean sd n missing

1 alcohol 20 33 38.0 43.0 58 38.2 7.65 177 0

2 cocaine 23 30 33.5 37.2 60 34.5 6.69 152 0

3 heroin 19 27 33.0 39.0 55 33.4 7.99 124 0

Similarly, we can create two-way tables that display
either as counts or proportions.

tally(sex ~ substance, data=HELPrct)

substance

sex alcohol cocaine heroin

female 36 41 30

male 141 111 94

tally( ~ sex + substance, data=HELPrct)

substance

sex alcohol cocaine heroin

female 36 41 30

male 141 111 94

Marginal totals can be added with margins=TRUE
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tally(sex ~ substance, data=HELPrct, margins=TRUE)

substance

sex alcohol cocaine heroin

female 36 41 30

male 141 111 94

Total 177 152 124

tally( ~ sex + substance, data=HELPrct, margins=TRUE)

substance

sex alcohol cocaine heroin Total

female 36 41 30 107

male 141 111 94 346

Total 177 152 124 453

4.4 Linear models

Although we have not mentioned linear models yet, they
are an important motivation for the template approach to
graphical and numerical summaries. The lattice graph-
ics system already makes use of the same template as
linear models, and the mosaic package makes it possible
to do numerical summaries with the same template. By
introducing students to the template for graphical and
numerical summaries, there is very little new to learn
when they are ready to fit a model.

Perhaps you are thinking this
means that we don’t need to
wait so long to introduce mod-
eling in the introductory statis-
tics course. We think so too. See
the companion volume, Start
Modeling in R.

For example, suppose we want to know how the
width of kids’ feet depends on the length of the their feet.
We could make a scatter plot and we can construct a lin-
ear model using the same template

xyplot(width ~ length, data=KidsFeet)

lm(width ~ length, data=KidsFeet)

Call:

lm(formula = width ~ length, data = KidsFeet)

Coefficients:

(Intercept) length

2.862 0.248
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We’ll have more to say about modeling elsewhere. For
now, the important point is that our use of the template
for graphing and numerical summaries prepares students
to ask how does y depend on x and to formalize models
of two or more variables when the time comes.

4.5 A few other tests

Many introductory statistics classes introduce students
to one- and two-sample tests for means and proportions.
The mosaic package brings these into the template as
well. More Info

For a more thorough treatment
of how to use R for the core
topics of a traditional intro-
ductory statistics course, see A
Student’s Guide to R.

More Info

Chi-squared tests can be per-
formed using chisq.test().
This function is a little different
in that it operates on tabulated
data of the sort produced by
tally() rather than on the data
itself. So the use of the template
happens inside tally() rather
than in chisq.test().

t.test( ~ length, data=KidsFeet)

One Sample t-test

data: data$length

t = 100, df = 40, p-value <2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

24.3 25.2

sample estimates:

mean of x

24.7

The output from these functions also includes more than
we really need. The mosaic package provides pval() and
confint() for extracting p-values and confidence inter-
vals:
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pval(t.test( ~ length, data=KidsFeet))

p.value

3.06e-50

confint(t.test( ~ length, data=KidsFeet))

mean of x lower upper level

1 24.7 24.3 25.2 0.95

confint(t.test(length ~ sex, data=KidsFeet))

mean in group B mean in group G lower upper level

1 25.1 24.3 -0.045 1.61 0.95

# using Binomial distribution

confint(binom.test( ~ sex, data=HELPrct))

probability of success lower upper level

1 0.236 0.198 0.278 0.95

# using normal approximation to the binomial distribution

confint(prop.test( ~ sex, data=HELPrct))

p lower upper level

1 0.236 0.198 0.279 0.95

confint(prop.test(sex ~ homeless, data=HELPrct))

prop 1 prop 2 lower upper level

1 0.191 0.275 -0.165 -0.00143 0.95

4.6 lattice bells and whistles

In the plots we have shown so far, we have focused on
creating a variety of useful plots and (for the most part)
accepted the default presentation of them. The lattice
graphics system provides many bells and whistles that
can be introduced once the graphics template has been
mastered. Optional arguments to the graphics functions
can be used to add or modify
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• the viewing window

• titles,

• axis labels,

• colors, shapes, sizes, and line types,

• transparency,

• fonts

and many other features of a plot. Our advice is to hold
off on such bells and whistles until students ask or an
analysis demands them.

4.6.1 Example: Number of births per day

We have seen the Births78 data set in Section 3.2. The
plots below take advantage of additional arguments to
improve the plot. The first plot below illustrates one of More Info

%% performs modular arith-
metic, in this case giving seven
groups, one for each day of the
week.

the important features of this data set – there are usually
fewer births on two days of the week and more on the
other five. From this we can be quite certain that 1978

More Info

Some of the arguments here
use lists. Lists are one of the
fundamental “container types”
in R. Instructors will benefit
from being able to recognize
them. We will have more to say
about them in Chapter 7.

began on a Sunday.

More Info

We could also use the wday()
function in the lubridate pack-
age to compute the weekday
directly from date.

xyplot(births ~ date, data=Births78,

groups=dayofyear %% 7,

auto.key=list(columns=4),

main="Number of US births each day in 1978",

xlab="day of year",

ylab="# of births",

par.settings=list(

superpose.symbol=list(pch=16, cex=.8, alpha=.8))

)
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Here we have used

• auto.key to control the layout of the legend (4 columns
instead of 1)

• main to set the title for the plot

• xlab and ylab to set the axis labels

• par.settings to set the plot character (pch), character
expansion (cex), and opacity (alpha) for overlaid plots
(superpose.symbol).

The following plot uses lines instead of points which
makes it easier to locate the handful of unusual observa-
tions.

xyplot(births ~ date, data=Births78,

groups=wday, type='l',

main="Number of US births each day in 1978",

auto.key=list(columns=4, lines=TRUE, points=FALSE),

xlab="day of year",

ylab="# of births"

)
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4.6.2 Themes

Settings that are used repeatedly can be collected into a
theme. The mosaic package provides such a theme called
theme.mosaic(). The show.settings() function displays
the settings of the currently active theme.
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trellis.par.set(col.whitebg())

show.settings()

superpose.symbol superpose.line strip.background strip.shingle dot.[symbol, line]

box.[dot, rectangle, umbrella] add.[line, text]

Hello

World

reference.line plot.[symbol, line] plot.shingle[plot.polygon]

histogram[plot.polygon] barchart[plot.polygon] superpose.polygon regions

More Info

In the printed version of this
book, all three examples
appear in black and white
and were processed with
theme.mosaic(bw=TRUE). In
the online version, the first and
third examples appear in color.

trellis.par.set(theme.mosaic(bw=TRUE))

show.settings()

superpose.symbol superpose.line strip.background strip.shingle dot.[symbol, line]

box.[dot, rectangle, umbrella] add.[line, text]

Hello

World

reference.line plot.[symbol, line] plot.shingle[plot.polygon]

histogram[plot.polygon] barchart[plot.polygon] superpose.polygon regions

trellis.par.set(theme.mosaic())

show.settings()

superpose.symbol superpose.line strip.background strip.shingle dot.[symbol, line]

box.[dot, rectangle, umbrella] add.[line, text]

Hello

World

reference.line plot.[symbol, line] plot.shingle[plot.polygon]

histogram[plot.polygon] barchart[plot.polygon] superpose.polygon regions
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Themes can also be assigned to par.settings if we want
them to affect only one plot:

xyplot(births ~ date, data=Births78,

groups=wday, type='l',

main="Number of US births each day in 1978",

auto.key=list(columns=4, lines=TRUE, points=FALSE),

par.settings=theme.mosaic(bw=TRUE),

xlab="day of year",

ylab="# of births"

)
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4.7 Some additional examples

4.7.1 Dot plots

Dotplots are not as commonly seen in the statistical liter-
ature as they are in statistics education, where they can
serve an important role in helping students learn to in-
terpret histograms (and frequency polygons and density
plots). A dot plot represents each value of a quantitative
variable with a dot. The values are rounded a bit so that
the dots line up neatly, and dots are stacked up into lit-
tle towers when the data values cluster near each other.
Dot plots are primarily used with modestly sized data
sets and can be used as a bridge to the other plots, where
there is no longer a direct connection between a compo-
nent of the plot and an individual observation.
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Here is an example using the sepal lengths recorded
in the iris data set.

dotPlot(~ Sepal.Length, data=iris,

n=30, # approx. 30 bins/columns

alpha=.6) # partially transparent
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We can use a conditional variable to give us separate dot

Teaching Tip

Dot plots are useful for dis-
playing sampling distributions
and bootstrap distributions,
especially if the total number
of dots is chosen to be some-
thing simple like 1000. In that
case, probabilities can be easily
estimated by counting dots.

plots for each of the three species in this data set.

dotPlot(~ Sepal.Length | Species, data=iris, n=20,

layout=c(3,1)) # 3 columns (x) and 1 row (y)
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The connection between histograms and dot plots can
be visualized by overlaying one on top of the other.
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4.7.2 Frequency polygons: freqpolygon()

Frequency polygons and density plots provide alterna-
tives to histograms that make it easier to overlay the rep-
resentations of multiple subsets of the data. A frequency
polygon is created from the same data summary (bins
and counts) as a histogram, but instead of representing
each bin with a bar, it is represented by a point (at the
center of the where the top of the histogram bar would
have been).

These points are then connected with line segments.
Here is an example that shows the distribution of Old
Faithful eruptions times from a sequence of observations Caution!

The faithful data set contains
similar data, but the variable
names in that data frame are
poorly chosen. The geyser data
set in the MASS package has
better names and more data.

require(MASS)

freqpolygon( ~ duration, data=geyser, n=15)
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Numerically, the data are being summarized and rep-

Teaching Tip

Point out that an interesting
feature of this distribution is its
clear bimodality. In particular,
the mean and median eruption
time are not a good measures
of the duration of a “typical”
eruption since almost none of
the eruption durations are near
the mean and median.

resented in exactly the same way as for histograms, but
visually the horizontal and vertical line segments of the
histogram are replaced by sloped line segments.
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This may give a more accurate visual representation in
some situations (since the distribution can “taper off” bet-
ter). More importantly, it makes it much easier to overlay
multiple distributions.

freqpolygon( ~ Sepal.Length, data=iris,

groups=Species,

ylim=c(0,1.5) # manually set y-axis range

)
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4.7.3 ASH plots: Average Shifted Histograms

Histograms are sensitive to the choice of bin widths and
edges (or centers). One way to reduce this dependency
is called an Average Shifted Histogram or ASH plot. The
height of an ASH plot is the average height over all his-
tograms of a fixed bin width. If you are familiar with
density plots (discussed in the next section), ASH plots
will remind you them, but they are far easier to explain to
beginners.
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ashplot( ~ Sepal.Length, data=iris, groups=Species,

width = 1.0, main = "width = 1.0")

ashplot( ~ Sepal.Length, data=iris, groups=Species,

width = 0.25, main = "width = 0.25")
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4.7.4 Density plots: densityplot()

Density plots are similar to frequency polygons, but the
piecewise linear representation is replaced by a smooth
curve.

densityplot( ~ Sepal.Length, data=iris, groups=Species)
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Beginners do not need to know the details of how that
smooth curve is generated, but should be introduced
to the adjust argument which controls the degree of
smoothing. It is roughly equivalent to choosing wider or
narrower bins for a histogram or frequency polygon. The
default value is 1. Higher values smooth more heavily;
lower values, less so.

densityplot( ~ Sepal.Length, data=iris, groups=Species,

adjust=3, main="adjust=2")

densityplot( ~ Sepal.Length, data=iris, groups=Species,

adjust=1/3, main="adjust=1/2")
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4.7.5 The Density Scale

There are three scales that can be used for the plots in the
preceding section: count, percent, and density. Begin-
ning students will be most familiar with the count scale
and perhaps also the percent scale, but most will not
have seen the density scale. The density scale captures
the most important aspect of all of these plots:

Area is proportional to frequency.



start teaching with r 63

The density scale is chosen so that the constant of propor-
tionality is 1, in which case we have

Area equals proportion. Teaching Tip

Create some histograms or fre-
quency polygons with a density
scale and see if your students
can determine what the scale
is. Choosing convenient bin
widths (but not 1) and com-
paring plots with different bin
widths and different scale types
can help them reach a good
conjecture about the density
scale.

This is the only scale available for densityplot() and is
the most suitable scale if one is primarily interested in the
shape of the distribution. The vertical scale is affected very
little by the choice of bin widths or adjust multipliers.
It is also the appropriate scale to use when overlaying a
density function onto a histogram, something the mosaic
package makes easy to do.

histogram( ~ Sepal.Length | Species, data=iris, fit="normal")
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The other scales are primarily of use when one wants
to be able to read off bin counts or percents from the plot.

4.7.6 Groups or panels?

The following examples using the iris data set provide
a comparison of using groups or panels to separate sub-
sets of the data. First we put the three species into three
separate panels.

xyplot(Sepal.Length ~ Sepal.Width | Species, data=iris,

layout=c(3,1)) # layout controls number of columns and rows
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Alternatively, we can use the groups argument to indicate
the different species using different symbols on the same
panel.

xyplot(Sepal.Length ~ Sepal.Width, groups=Species,

auto.key=list(columns=3), data=iris)
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Sometimes it is helpful to use both panels and symbol
groups.

xyplot(Sepal.Length ~ Sepal.Width | Species, groups=Species,

auto.key=list(columns=3), data=iris)
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4.7.7 Dealing with long labels

Suppose we want to display the following table (based on
data from the 1985 Current Population Survey) using bar
graph.

tally( ~ sector, data=CPS85)

clerical const manag manuf other prof

97 20 55 68 68 105

sales service

38 83

The mosaic function bargraph() can display these tables
as bar graphs, but there isn’t enough room for the labels.

bargraph(~ sector, data=CPS85)
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One solution would be to use horizontal bars

# horizontal bars

bargraph(~ sector, data=CPS85, horizontal=TRUE)

count
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Another is to rotate the labels.
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bargraph(~ sector, data=CPS85,

scales=list(x=list(rot=45)))
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As with the other lattice plots, we can add grouping
or conditioning to our plot.

bargraph(~ sector, data=CPS85, groups=race,

auto.key=list(space="right"),

scales=list(x=list(rot=45)))

bargraph(~ sector | race, data=CPS85,

scales=list(x=list(rot=45)))
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4.8 Saving Your Plots

There are several ways to save plots in RStudio, but the
easiest is probably the following: You can save all of this export-

ing and copying and pasting
if you use RMarkdown, or
knitr/LATEX to prepare your
documents.

1. In the Plots tab, click the “Export” button.

2. Copy the image to the clipboard using right click.

3. Go to your document (e.g. Microsoft Word) and paste
in the image.

4. Resize or reposition your image as needed.
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Altenatively, a plot can be exported to a file.
R also provides function like pdf() and png() that

can be used to save plots in a varity of formats. See the
documentation of these functions for details and links to
functions that can be used to save graphics in other file
formats.

4.9 mplot()

The mplot() function does a number of different things,
depending on what information it is provided. When More Info

mplot() is a generic function.
R includes many generic func-
tions (like print() and plot()
and summary()). These func-
tions inspect the objects passed
as arguments (at least the first
one) and decide what to do
based on the class of the argu-
ment(s).

mplot() is given a data frame in RStudio, it opens up an
interactive plot with controls that allow the user to select
variables and create plots of various sorts.

The plots can be made using lattice or ggplot2, and
there is a “Show expression” button that displays the
code used to create the plot. This can be used to learn
how to make the plot and can be copied and pasted into
the console or documents. Caution!

This feature of mplot() takes
advantage of the manipulate
package and so works only
within RStudio. See Chapter 8

for more about manipulate.

The use of mplot() makes it easy to explore a number
of plots quickly and can facilitate learning either lattice
or ggplot2 by showing the code used to create the plots.
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4.10 Review of R Commands

Here is a brief summary of the commands introduced in this chapter.

require(mosaic) # load the mosaic package

require(mosaicData) # load the mosaic data sets

tally( ~ sector, data=CPS85) # frequency table

tally( ~ sector + race, data=CPS85) # cross tabulation of sector by race

mean( ~ age, data = HELPrct) # mean age of HELPrct subjects

mean( ~ age | sex, data = HELPrct) # mean age of male and female subjects

mean(age ~ sex, data = HELPrct) # mean age of male and female subjects

median(x); var(x); sd(x); # more numerical summaries

quantile(x); sum(x); cumsum(x) # still more summaries

favstats( ~ Sepal.Length, data=iris) # compute favorite numerical summaries

histogram( ~ Sepal.Length | Species, data=iris) # histograms (with extra features)

dotPlot( ~ Sepal.Length | Species, data=iris) # dot plots for each species

freqpolygon( ~ Sepal.Length, groups = Species, data=iris) # overlaid freq. polygons

densityplot( ~ Sepal.Length, groups = Species, data=iris) # overlaid densityplots

qqmath( ~ age | sex, data=CPS85) # quantile-quantile plots

bwplot(Sepal.Length ~ Species, data = iris) # side-by-side boxplots

xyplot(Sepal.Length ~ Sepal.Width | Species, data=iris) # side-by-side scatter plots

bargraph( ~ sector, data=CPS85) # bar graph

mplot(HELPrct) # interactive plot (RStudio only)
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4.11 Exercises

4.1 The Utilities2 data set in the mosaic package con-
tains information about the bills for various utilities at a
residence in Minnesota collected over a number of years.
Since the number of days in a billing cycle varies from
month to month, variables like gasbillpday (elecbillpday,
etc.) contain the gas bill (electric bill, etc.) divided by the
number of days in the billing cycle.

a) Use the documentation to determine what the kwh
variables contains.

b) Make a scatter plot of gasbillpday vs. monthsSinceY2K
using the command

xyplot(gasbillpday ~ monthsSinceY2K, data=Utilities2,

type='l') # the letter l

What pattern(s) do you see?

c) What does type=’l’ do? Make your plot with and
without it. Which is easier to read in this situation?

d) What happens if we replace type=’l’ with type=’b’?

e) Make a scatter plot of gasbillpday by month. What do
you notice?

f) Make side-by-side boxplots of gasbillpday by month
using the Utilities2 data frame. What do you notice?

Your first try probably won’t give you what you ex-
pect. The reason is that month is coded using num-
bers, so R treats it as numerical data. We want to treat
it as categorical data. To do this in R use factor(month)
in place of month. R calls categorical data a factor.

g) Make any other plot you like using this data. Include
both a copy of your plot and a discussion of what you
can learn from it.



5
Simulation-Based Inference

Resampling approaches have become increasingly im-
portant in statistical education1,2. The mosaic package 1 N. Tintle, B. Chance, G. Cobb,

S. Roy, T. Swanson, and J. Van-
derStoep. Combating anti-
statistical thinking using
simulation-based methods
throughout the undergradu-
ate curriculum. The American
Statistician, 69(4), 2015

2 Tim C. Hesterberg. What
teachers should know about
the bootstrap: Resampling in
the undergraduate statistics
curriculum. The American
Statistician, 2015

provides simplified functionality to support teaching in-
ference based on randomization tests and bootstrap meth-
ods. Our goal is to focus attention on the important parts
of these techniques (e.g., where randomness enters in and
how to use the resulting distribution) while hiding some
of the technical details involved in creating loops and ac-
cumulating values.

5.1 Staring Early

One of the advantages of simulation-based inference is
that one can start teaching inference early in the course.
Section 3.1 describes an example (based on Fisher’s lady
tasting tea) that we have often used on the first day of
class. Textbooks that use a simulation-based approach
also begin their discussion of the inference process im-
mediately, using other examples.3,4 Even when teaching 3 Robin H Lock, Patti Frazer

Lock, and Kari Lock Morgan.
Statistics: Unlocking the Power of
Data. Wiley Global Education,
2012
4 Nathan Tintle, Beth Chance,
George Cobb, Allan Rossman,
Soma Roy, Todd Swanson, and
Jill VanderStoep. Introduction to
Statistical Investigations. Wiley
Global Education, 2015

a more traditional course, simulation of the lady tasting
tea or some other example can be introduced early in the
course to help students begin to understand the key ideas
involved in hypothesis testing and estimation.

5.2 Hypothesis Tests

Hypothesis testing can be thought of as a 4-step process:

1. State the null and alternative hypotheses.
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2. Compute a test statistic.

3. Determine the p-value.

4. Draw a conclusion.

In a traditional introductory statistics course, once this
general framework has been mastered, the main work for
students is in applying the correct formula to compute
the standard test statistics in step 2 and using a table or
computer to determine the p-value based on the known
(usually approximate) theoretical distribution of the test
statistic under the null hypothesis.

In a simulation-based approach, steps 2 and 3 change.
In Step 2, it is no longer required that the test statistic
be normalized to conform with a known, named distri-
bution. Instead, natural test statistics, like the difference
between two sample means

y1 − y2

can be used instead of the standard two-sample t test
statistic

y1 − y2√
s2

1
n1

+
s2

2
n2

.

In Step 3, we use randomization to approximate the
sampling distribution of the test statistic. Our lady tasting
tea example demonstrates how this can be done from first
principles as early as the first day of class.5 This example 5 See Section 3.1.
is a bit unusual, however. Because the sampling distri-
bution is so simple, the simulation required to create a
randomization distribution is completely specified with-
out reference to the data: It’s a binomial distribution with
parameters determined by the sample size and the null
hypothesis, and we can simulate it with rflip().

More typically, we will use randomization to create
new simulated data sets that are like our original data in
some ways, but make the null hypothesis true. For each
simulated data set, we calculate our test statistic, just as
we did for the original sample. Together, this collection
of test statistics computed from the simulated samples
constitute our randomization distribution.

When creating a randomization distribution, we will
attempt to satisfy 3 guiding principles.
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1. Be consistent with the null hypothesis.

We need to simulate a world in which the null hypoth-
esis is true. If we don’t do this, we won’t be testing our
null hypothesis.

2. Use the data in the original sample.

The original data should shed light on some aspects
of the distribution that are not determined by null hy-
pothesis. For example, a null hypothesis about a mean
doesn’t tell us about the shape of the population distri-
bution, but the data give us some indication.

3. Reflect the way the original data were collected.

5.2.1 Permutations tests using shuffle()

The mosaic package provides shuffle() as a synonym
for sample(). When used without additional arguments,
this will permute its first argument.

shuffle(1:10)

[1] 3 8 4 7 6 1 10 9 2 5

shuffle(1:10)

[1] 10 5 6 9 1 7 8 4 3 2

Applying shuffle() to an explanatory variable allows
us to test the null hypothesis that the explanatory vari-
able has, in fact, no explanatory power. This idea can be
used to test

• the equivalence of two or more proportions,

• the equivalence of two or more means,

• whether a regression parameter is 0.

For example, let’s test whether young men and women
have the same mean body temperature using a data set
that contains body temperatures for 50 college students,
25 men and 25 women.
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require(Lock5withR)

inspect(BodyTemp50)

categorical variables:

name class levels n missing

1 Sex factor 2 50 0

distribution

1 Female (50%), Male (50%)

quantitative variables:

name class min Q1 median Q3 max mean sd n

1 BodyTemp numeric 96.4 97.8 98.2 98.8 101 98.3 0.765 50

2 Pulse integer 57.0 70.2 75.0 78.0 89 74.4 6.440 50

3 Gender integer 0.0 0.0 0.5 1.0 1 0.5 0.505 50

missing

1 0

2 0

3 0

1. State the null and alternaive hypotheses.

• H0: mean body temperature is the same for males
and females.

• Ha: mean body temperature differs between males
and females.

2. Compute a test statistic.

favstats( BodyTemp ~ Sex, data = BodyTemp50)

Sex min Q1 median Q3 max mean sd n missing

1 Female 96.9 97.6 98.1 98.7 99.5 98.2 0.675 25 0

2 Male 96.4 98.0 98.3 98.8 100.8 98.3 0.851 25 0

T <- diffmean( BodyTemp ~ Sex, data = BodyTemp50); T

diffmean

0.176

3. Use randomiztion to compute a p-value.
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Temp2.Null <-

do(1000) * diffmean( BodyTemp ~ shuffle(Sex), data = BodyTemp50)

histogram( ~ diffmean, data = Temp2.Null, center = 0, v = 0.176)

tally( ~ (diffmean >= T), data = Temp2.Null)

TRUE FALSE

214 786

prop( ~ (diffmean >= T), data = Temp2.Null)

TRUE

0.214

diffmean
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4. Draw a conclusion.

The p-value is large, so these data offer no reason to
reject the hpythesis that male and female college stu-
dents have the same mean body temperature.

5.2.2 Computing p-values

In the preceding example, we hardly needed to compute
a p-value because the histogram clearly showed that the
observed test statistic (0.176) would not be unusual even
if the null hypothesis were true, so these data don’t of-
fer any reason to reject the null hypothesis that male and
female college students have the same mean body tem-
perature.

Nevertheless, there are two issues related to p-value
calculations that we want to address with this example:
including the observed test statistic in the null distribu-
tion, and calculating 2-sided p-values.

Caution!
If you are using a text book
that covers randomization tests,
you will need to check whether
they include the test statistic
computed from the original
data in the null distribution or
not.
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If the null hypothesis is true, then not only our ran-
domly generated data, but also the original data were
generated in a world in which the null hypothesis is true.
So it makes sense to add the original test statistic to the
randomization distribution before calculating the p-value.
This has two advantages. First, it ensures that our type
I error rate is no larger than the nominal rate. Second,
it avoids reporting a p-value of 0 since there will always
be at least one test statistic at least as extreme as the one
computed from the original data, namely the one com-
puted from the original data. Caution!

Although using 999 or 9999

replicates results in p-values
that are “round numbers", there
is some risk that students will
use the 999 vs 1000 distinction
as their primary way to tell
whether you are creating a
randomization dsitribution or a
bootstrap distribution.

To simplify this calculation, we may choose to use 999

or 9999 replicates instead of 1000 or 10,000. The mosaic
package also includes the prop1() function which adds
an additional count to both the numerator and denomi-
nator for the purpose of automating this sort of p-value
calculation. This will result in a slightly larger (one-sided)
p-value.

prop1( ~ (diffmean >= T), data = Temp2.Null)

TRUE

0.215

The only challenge for the instructor is to decide if and
when to introduce this minor change to the p-value calcu-
lation.

But we need a two-sided p-value given our alterna-
tive hypothesis. The preferred way to calculate 2-sided
p-values is also the simplest: just double the 1-sided p-
value.

2 * prop1( ~ (diffmean >= T), data = Temp2.Null)

TRUE

0.43

An alternative approach sometimes seen would add
the proportion of the randomization distribution that
is below −T = −0.176. For a symmetric randomiza-
tion distribution, this should give a very similar result,
but it does not perform as well when the randomization
distribution is skewed, is slightly more difficult to com-
pute, and is not transformation invarient, so tests that are
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equivalent as 1-sided tests might not result in equivalent
2-sided tests. It seems there is no reason to introduce this
method to students. Teaching Tip

But this alternative might be
covered in the text book you are
using, so students might use it
even if you don’t teach it.

5.2.3 Some additional examples

The technique of shuffling an explanatory variable can
be applied to a wide range of situations. The following
templates illustrate the similarity among these.

Two.Proportions <- do(999) * diffprop(y ~ shuffle(x), data = Data)

Two.Means <- do(999) * diffmean(y ~ shuffle(x), data = Data)

Linear.model <- do(999) * lm(y ~ shuffle(x) + a, data = Data)

Two.Way.Table <- do(999) * chisq(y ~ shuffle(x), data = Data)

Note

The chisq() function com-
putes the chi-squared statistic
either from a formula and data
frame, from a table produced
by tally(), or from an object
produced by chisq.test().

As an example, let’s consider the proportion of sub-
jects in the Health Evaluation and Linkage to Primary
Care who were admitted to the substance abuse program
for each of three substances: alcohol, cocaine, and heroin.
We’d like to know if there is evidence that these propor-
tions differ for men and for women. In our data set, we
observe modest differences.

tally( substance ~ sex, data = HELPrct,

format="prop", margins = TRUE)

sex

substance female male

alcohol 0.336 0.408

cocaine 0.383 0.321

heroin 0.280 0.272

Total 1.000 1.000

Could those differences be attributed to chance? Or do
these results provide reliable evidence that the drug of
choice varies (a bit) between men and women?

We can simulate a world in which the proportions
vary only because of random sampling variability using
shuffle() to permute the sex (or equivalently substance)
labels.
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T <- chisq(substance ~ shuffle(sex), data = HELPrct); T # test statistic

X.squared

1.8

Substance.Null <-

do(999) * chisq(substance ~ shuffle(sex), data = HELPrct)

histogram( ~ X.squared, data = Substance.Null, v = T, width = 0.25)

prop1( ~(X.squared >= T), data = Substance.Null)

TRUE

0.453
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Both the histogram and our randomization p-value sug-
gest that the differences observed between men and
women are not statistically significant.

5.2.4 Testing a single mean
Note

Somewhat surprisingly, this is
the most challenging hypoth-
esis test to handle with our
system. See below for one rea-
son this doesn’t bother us too
much.

One wrinkle in our system is the test for a single mean.
Let’s illustrate with a test of H0 : µ = 98.6 using our sam-
ple of 50 body temperatures. Testing a null hypothesis of
the form

• H0: µ = µ0

is a bit of a special case. Unlike the examples above, there
is no explanatory variable to shuffle. Unlike a test for
a single proportion, the null hypothesis does not com-
pletely specify the sampling distribution. Note

Many books use x here instead
of y.

At least there is an obvious candidate for a test statis-
tic: the sample mean, y.
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mean( ~ BodyTemp, data = BodyTemp50)

[1] 98.3

This test statistic is easily applied to any data set, we just
need a way to generate random data sets in which the
null hypothesis is true. As mentioned above, there is no
explanatory variable to shuffle. If we shuffle BodyTemp
(or the entire data set), we will get the same mean every
time, since the mean does not depend on order.

Instead, we sample this time with replacement. The
resample() function does this.

resample(1:10) # notice the duplicates

[1] 10 5 5 6 1 3 8 4 6 2

We can resample individual variables or the entire data
frame. (Since there is only one variable involved in this
analysis, the results would be essentially the same either
way.)

# this doesn't work:

Temp0.Null <-

do(999) * mean( ~ BodyTemp, data = resample(BodyTemp50))

Unfortunately, Temp0.Null is not a randomization dis-
tribution. Inspecting a histogram shows that the distri-
bution is not centered at 98.6, so we are not simulating a
world in which the null hypothesis is true.

histogram( ~mean, data = Temp0.Null)
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Instead it is centered at the mean of our original sam-
ple, 98.26. This hints at a way to create a proper ran-
domization distribution. We can shift the distribution
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by 98.6− 98.26 = 0.34. That will result in a distribution
that has the same shape as our data but a mean of 98.6, as
the null hypothesis demands.
Temp1.Null <- do(9999) *

mean( ~ BodyTemp + (98.6 - 98.26), data = resample(BodyTemp50))

histogram( ~ mean, data = Temp1.Null, v = 98.26, center = 98.6)
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As before, we can now estimate a p-value by tallying how
often we see a value at least as small as 98.26.

2 * prop1( ~ (mean <= 98.26), data = Temp1.Null)

TRUE

0.0016

This time the p-value is quite small – it would seem that Note

We used more replicates in
this example to give us a better
estimate of this small p-value.

98.6 is not the mean body temperature.
Of all the randomization distributions, randomiza-

tion distributions used to test hypotheses about a mean
are the most awkward to create because of the shifting
that is required to center the distribution and the use of
resample() (which can cause confusion with bootstrap
distributions). Fortunately, creating a confidince interval
from a bootstrap distribution in this situation is straight-
forward, and we typically prefer confidence intervals to
p-values in this situation.

5.3 The Bootstrap

The bootstrap is a method used (primarily) for creating
confidence intervals. The basic idea is quite simple and
helps reinforce important ideas about what a confidence
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interval is.

5.3.1 The idea behind the bootstrap
Caution!

There are more complicated
methods for computing boot-
strap confidence intervals that
have better performance. We
introduce bootstrap confidence
intervals using the two simple
methods here. Sometimes we
return later in the course to talk
about the bootstrap-t intervals.

Suppose we want to estimate the mean body tempera-
ture using the BodyTemp50 data set. It is simple enough to
compute the mean from our data.

mean( ~ BodyTemp, data = BodyTemp50)

[1] 98.3

What is missing is some sense for how precise this esti-
mate is. The most common way to present this informa-
tion is with a confidence interval.

If we had access to the entire population, we could
generate many random samples to see how much vari-
ability there is in estimates from sample to sample (see
Section 5.8). In practice, we will never have access to the
entire population (or we wouldn’t need to be making esti-
mates). The key idea of the bootstrap is to treat our sam-
ple as an approximate representation of the population,
and to generate an approximate sampling distribution by
sampling (with replacement) from our sample. The shape Note

We can use bootstrap meth-
ods to estimate the bias in the
estimate as well.

of the bootstrap distribution indicates how precise our
estimate is.

Before we proceed, there are a few important things to
note about this process.

1. Resampling does not provide a better estimate.

Resampling is only used to estimate the sample-to-
sample variability in our estimate, not in an attempt to
improve the estimate itself. If we attempted to improve
our estimate using our bootstrap samples, we would
just make things worse by producing an estimate of
our estimate and essentially doubling any bias in the
estimation.

2. Resampling works better with large samples than with
small samples.

Small samples are unlikely to represent the popula-
tion well. While resampling can provide methods that
work as well as the traditional methods in standard
situations and which can be applied in a wider range
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of situations without degraded performance, they do
not fundamentally alter the need to have a sufficient
sample size.

3. The two bootstrap methods we present below are cho-
sen for simplicity, not for performance.

The primary value in introducing bootstrapping in in-
troductory courses is pedagogical, not scientific. The
percentile and standard error intervals introduced be-
low are readily accessible to students and can be ap-
plied in a wide range of situations. But they are not
the state of the art. In Section 5.7 we will briefly dis-
cuss the bootstrap-t interval, a more accurate bootstrap
method. Other methods, such as BCa (bias corrected
and accelerated) or ABC (approximate bootstrap confi-
dence) also improve upon the percentile and standard
error methods, but are beyond the scope of most intro-
ductory courses.

Packages like resample and boot provide functions for
computing intervals using more sophisticated meth-
ods.

5.3.2 Bootstrap confidence intervals for a mean

Creating a randomization distribution to test a hypothesis
about a single mean had some extra challenges. Fortu-
nately, a confidence interval is often preferable in this sit-
uation, and creating a bootstrap distribution for a single
mean is straightforward: we simply compute the mean
body temperature from many resampled versions of our
original data.

Temp.Boot <-

do(1000) * mean( ~BodyTemp, data = resample(BodyTemp50))

When applied to a data frame, the resample() function
samples rows with replacement to produce a new data
frame with the same number of rows as the original, but
some rows will be duplicated and others missing.

Caution!
In less than ideal situations, we
may need to adjust for bias or
use more sophisticated meth-
ods. It is good for students to
be in the habbit of checking
these features of the bootstrap
distribution before using the
simple bootstrap methods we
present in this section.

Ideally, a bootstrap distribution should be unimodal,
roughly symmetric, and centered at the original estimate.
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mean( ~ BodyTemp, data = BodyTemp50)

[1] 98.3

mean( ~ mean, data = Temp.Boot)

[1] 98.3

histogram( ~ mean, data = Temp.Boot, nint = 25,

v = mean( ~ BodyTemp, data = BodyTemp50),

c = mean( ~ BodyTemp, data = BodyTemp50)

)
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To compute a 95% percentile confidence interval, we
determine the range of the central 95% of the bootstrap
distribution. The cdata() function automates this calcula-
tion.

cdata( ~ mean, data = Temp.Boot, p = 0.95)

low hi central.p

98.06 98.48 0.95

Alternatively, qdata() can be used to obtain the left and
right endpoints separately (or for 1-sided confidence in-
tervals).

qdata( ~ mean, data = Temp.Boot, p = 0.025)

p quantile

0.025 98.058

qdata( ~ mean, data = Temp.Boot, p = 0.975)

p quantile

0.975 98.476
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A second simple method for computing a confidence
interval from a bootstrap distribution involves using the
boostrap distribution to estimate the standard error.

SE <- sd( ~ mean, data = Temp.Boot); SE

[1] 0.106

estimate <- mean( ~ BodyTemp, data = BodyTemp50)

estimate

[1] 98.3

estimate + c(-1,1) * 2 * SE

[1] 98.0 98.5

This method does not perform as well as the per-
centile method, but can serve as a good bridge to the
formula-based intervals often included even in a course
that focuses on simulation-based methods. How to re-
place the constant 2 with an appropriate value to create
more accurate intervals or to allow for different confi-
dence levels is a matter of some subtlety. The simplest
method is to use quantiles of a normal distribution, but
this will undercover. Replacing the normal distribution
with an appropriate t-distribution will widen intervals
and can improve coverage, but the t-distribution is only
correct in a few cases – such as when estimating the mean
of a normal population – and can perform badly when
the population is skewed.6 6 Tim C. Hesterberg. What

teachers should know about
the bootstrap: Resampling in
the undergraduate statistics
curriculum. The American
Statistician, 2015

Because each of these methods produces a confidence
interval that depends only on the distribution of the es-
timates computed from the resamples, they are easily
implemented in wide variety of situations. Calculating
either of these simple confidence intervals from the boot-
strap distribution can be further automated using an ex-
tension to confint().
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confint(Temp.Boot, method = c("percentile", "stderr"))

name lower upper level method estimate

1 mean 98.1 98.5 0.95 percentile 98.3

2 mean 98.0 98.5 0.95 stderr 98.3

margin.of.error df

1 NA NA

2 0.213 49

All that remains then is the generation of the boot-
strap distribution itself.

5.3.3 Bootstrap confidence intervals for the difference
in means

If we are interested in a confidence interval for the differ-
ence in group means, we can use resample() and do() to
generate a bootstrap distribution in one of two ways.

Temp.Boot2a <-

do(1000) * diffmean(age ~ sex, data = resample(HELPrct))

Temp.Boot2b <-

do(1000) * diffmean(age ~ sex, data = resample(HELPrct, groups = sex))

In the second example, the resampling happens within Note

It is useful to adopt a conven-
tion regarding the naming
of randomization and boot-
strap distributions. The names
should reflect that data being
used and whether the distribu-
tion is a bootstrap distribution
or a randomization distribution.
We typically use .Rand or .Null
to indicate randomization dis-
tributions and .Boot to indicate
bootstrap distributions.

the sex groups so that the marginal counts for each sex
remain fixed. This can be especially important if one of
the groups is small, because otherwise some resamples
might not include any observations of that group.

favstats(age ~ sex, data = HELPrct)

sex min Q1 median Q3 max mean sd n missing

1 female 21 31 35 40.5 58 36.3 7.58 107 0

2 male 19 30 35 40.0 60 35.5 7.75 346 0

D <- diffmean( age ~ sex, data = HELPrct); D

diffmean

-0.784

favstats(age ~ sex, data = resample(HELPrct))

sex min Q1 median Q3 max mean sd n missing

1 female 21 30 34 39 58 35.3 7.80 98 0

2 male 19 30 35 39 58 35.3 7.59 355 0
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favstats(age ~ sex, data = resample(HELPrct, groups = sex))

sex min Q1 median Q3 max mean sd n missing

1 female 21 31 37 40 58 37.2 7.93 107 0

2 male 19 30 35 41 60 35.7 7.95 346 0

From here, the computation of confidence intervals
proceeds as before. Note

Visually inspecting the boot-
strap distribution for skew and
bias is an important step to
make sure the percentile inter-
val is not being applied in a
situation where it may perform
poorly.

histogram( ~ diffmean, data = Temp.Boot2b, v = D)

qqmath( ~ diffmean, data = Temp.Boot2b)

cdata( ~ diffmean, p = 0.95, data = Temp.Boot2b)

low hi central.p

-2.444 0.702 0.950
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Alternatively, we can compute a confidence interval
based on a bootstrap estimate of the standard error.

SE <- sd( ~ diffmean, data = Temp.Boot2b); SE

[1] 0.789

D + c(-1,1) * 2 * SE
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[1] -2.362 0.794

Either interval can be computed using confint(), if we
prefer.

confint(Temp.Boot2b, method = c("percentile", "stderr"))

name lower upper level method estimate

1 diffmean -2.44 0.702 0.95 percentile -0.784

2 diffmean -2.34 0.758 0.95 stderr -0.784

margin.of.error df

1 NA NA

2 1.55 452

5.3.4 Bootstrap distributions comparison

To illustrate the similarity among commands used to cre-
ate bootstrap distributions, we present five examples that
might appear in an introductory course.

One.Proportion <- do(1000) * prop( ~ x, data = resample(Data))

Two.Proportions <- do(1000) * diffprop( y ~ x, data = resample(Data, groups = x))

One.Mean <- do(1000) * mean( ~ x, data = resample(Data))

Two.Means <- do(1000) * diffmean( y ~ x, data = resample(Data, groups = x))

Correlation <- do(1000) * cor( y ~ x, data = resample(Data))

In the next section we discuss how to extend this to
regression models.

5.4 Resampling for Regression

There are at least two ways we can consider creating a
bootstrap distribution for a linear model. We can easily
fit a linear model to a resampled data set. But in some
situations this may have undesirable features. Influential
observations, for example, will appear duplicated in some
resamples and be missing entirely from other resamples.

Another option is to use “residual resampling". In
residual resampling, the new data set has all of the pre-
dictor values from the original data set and a new re-
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sponse is created by adding to the fitted function a resam-
pled residual.

Both methods are simple to implement; we either re-
sample the data or resample the model itself.

mod <- lm( length ~ width + sex, data = KidsFeet) # original model

do(1) * mod # see how do() treats it

Intercept width sexG sigma r.squared F numdf dendf

1 10.4 1.6 -0.133 1.04 0.413 12.7 2 36

do(2) * lm( length ~ width + sex, data = resample(KidsFeet)) # resampled data

Intercept width sexG sigma r.squared F numdf dendf

1 11.39 1.48 -0.132 0.981 0.338 9.17 2 36

2 7.46 1.95 -0.338 1.005 0.485 16.92 2 36

do(2) * lm( length ~ width + sex, data = resample(mod)) # resampled residuals

Intercept width sexG sigma r.squared F numdf dendf

1 5.84 2.13 -0.1113 0.849 0.642 32.3 2 36

2 9.20 1.74 -0.0222 0.979 0.465 15.7 2 36

do(2) * relm(mod) # abbreviated residual resampling

Intercept width sexG sigma r.squared F numdf dendf

1 13.3 1.26 -0.0696 0.913 0.355 9.92 2 36

2 4.5 2.24 0.0278 1.093 0.534 20.59 2 36

From here it is straightforward to create a confidence
interval for the slope (or intercept, or any coefficient) in a
linear model.

Kids.Boot <- do(1000) * relm(mod)

cdata( ~ width, data = Kids.Boot, p = 0.95)

low hi central.p

0.971 2.214 0.950

confint( Kids.Boot, parm = "width")

Warning: confint: Using df=Inf.

name lower upper level method estimate margin.of.error

1 width 0.947 2.24 0.95 stderr 1.44 0.647
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5.5 Which comes first: p-values or intervals?

This is a matter of some discussion among instructors
and textbook authors. The two most recognizable intro-
ductory statistics books give different answers. One7 in- 7 Nathan Tintle, Beth Chance,

George Cobb, Allan Rossman,
Soma Roy, Todd Swanson, and
Jill VanderStoep. Introduction to
Statistical Investigations. Wiley
Global Education, 2015

troduces hypothesis testing first, the other8 begins with

8 Robin H Lock, Patti Frazer
Lock, and Kari Lock Morgan.
Statistics: Unlocking the Power of
Data. Wiley Global Education,
2012

bootstrap confidence intervals. These two books differ in
several other ways as well. It remains to be seen whether
best practices will emerge or whether some issues will
remain a matter of personal preference. This is not un-
like the older debate over whether one should begin with
quantitative or categorical data – another way in which
these two simulation-based books diverge.

5.6 Dealing with Monte Carlo Variability

Because randomization and bootstrap distributions in-
volve a random component, p-values and confidence
intervals computed from the same data will vary. For
students (and graders), this can be disconcerting because
there is no “right" answer.

The amount of Monte Carlo variability depends on
the number of replicates used to create the randomiza-
tion or bootstrap distribution. And students will need
some guidance about how many replicates to use. It is
important that they not use too few as this will introduce
too much random noise into p-value and confidence in-
terval calculations. But each replicate costs time, and the
marginal gain for each additional replicate decreases as
the number of replicates incresases. There is little reason
to use millions of replicates (unless the goal is to estimate
very small p-values). We generally use roughly 1000 for
routine or preliminary work and increase this to 10,000

when we want to reduce the effects of Monte Carlo vari-
ability.

In a laboratory setting, it can be instructive to have
students compare their p-values or confidence intervals
using 1,000 and 10,000 replicates. Alternatively, the in-
structor can generate several p-values or confidence inter-
vals to illustrate the same principle.
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5.7 Better Confidence Intervals

The percentile and “t with bootstrap standard error" con-
fidence intervals have been improved upon in a number
of ways. In a first course, we generally do little more than
mention this fact, and encourage students to inspect the
shape of bootstrap distribution for indications of potential
problems with the percentile method.

One improvement that can be explained to students
in a course that combines simulation-based and formula-
based approaches is the bootstrap-t interval. Rather than
attempting to determine the best degrees of freedom for a
Student’s t-distribution, the bootstrap-t approximates the
actual distribution of

t =
θ̂ − θ

SE

using the boostrap distribution of

t∗ =
θ̂∗ − θ̂

SE∗
,

where θ̂∗ and SE∗ are the estimate and estimated stan-
dard error computed from each bootstrap distribution.
Implementing the bootstrap-t interval requires either an
extra level of conceptual framework or much more calcu-
lation to determine the values of SE∗. If a standard error
formula exists (e.g., SE = s/

√
n), this can be applied to

each bootstrap sample along with the estimator. An alter-
native is to iterate the bootstrap procedure (resampling
from each resample) to estimate SE∗. Since standard er-
rors are easier to estimate than confidence intervals, fewer
resamples are required (per resample) at the second level;
nevertheless, the additional computational overhead is
significant.

The mosaic package does not attempt to provide a
general framework for the bootstrap-t or other “second-
order accurate" boostrap methods. Packages such as
resample9 and boot10 are more appropriate for situations 9 Tim Hesterberg. resample:

Resampling Functions, 2015. R
package version 0.4
10 Angelo Canty and Brian Rip-
ley. boot: Bootstrap R (S-Plus)
Functions, 2015. R package ver-
sion 1.3-17; and A. C. Davison
and D. V. Hinkley. Bootstrap
Methods and Their Applications.
Cambridge University Press,
1997

where speed and accuracy are of utmost importance. But
the bootstrap-t confidence interval can be computed using
confint(), do() and favstats() in the case of estimating
a single mean or the difference between two means.
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In the example below, we analyse a data set from the
resample package. The Verizon data set contains repair
times for customers in CLEC (competitive) and ILEC (in-
cumbant) local exchange carrior.

# the resample package has name collisions with mosaic,

# so we only load the data, not the package

data(Verizon, package = "resample")

ILEC <- Verizon %>% filter(Group == "ILEC")

favstats( ~ Time, groups = Group, data = Verizon)

Group min Q1 median Q3 max mean sd n missing

1 CLEC 0 5.43 14.33 20.71 96.3 16.51 19.5 23 0

2 ILEC 0 0.73 3.59 7.08 191.6 8.41 14.7 1664 0

ashplot( ~ Time, groups = Group, data = Verizon,

auto.key = TRUE, width = 20)
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The skewed distributions of the repair times and unequal
sample sizes highlight differences between the bootstrap-t
and simpler methods.

BootT1 <-

do(1000) * favstats(~ Time, data = resample(ILEC))

confint(BootT1, method = "boot")

name lower upper level method estimate

1 mean 7.76 9.19 0.95 bootstrap-t 8.41

BootT2 <-

do(1000) * favstats( ~ Time, groups = Group,

data = resample(Verizon, groups = Group))

confint(BootT2, method = "boot")

name lower upper level method estimate

1 diffmean -22.5 -2.57 0.95 bootstrap-t -8.1
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This can also be accomplished manually, although the
computations are a bit involved for the 2-sample case.
Here are the manual computations for the 1-sample case:

estimate <- mean( ~ Time, data = ILEC)

estimate

[1] 8.41

SE <- sd( ~ mean, data = BootT1); SE

[1] 0.361

BootT1a <-

BootT1 %>%

mutate( T = (mean - mean(mean)) / (sd/sqrt(n)))

q <- quantile(~ T, p = c(0.975, 0.025), data = BootT1a)

q

97.5% 2.5%

1.81 -2.15

estimate - q * SE

97.5% 2.5%

7.76 9.19

densityplot( ~ T, data = BootT1a)

plotDist("norm", add = TRUE, col="gray50")
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For comparison, here are the intervals produced by
t.test() and the percentile method.
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confint(t.test( ~ Time, data = ILEC))

mean of x lower upper level

1 8.41 7.71 9.12 0.95

BootT1b <-

do(1000) * mean( ~ Time, data = resample(ILEC))

confint(BootT1b, method = "perc")

name lower upper level method estimate

1 mean 7.7 9.1 0.95 percentile 8.41

confint(t.test(Time ~ Group, data = Verizon))

mean in group CLEC mean in group ILEC lower upper level

1 16.5 8.41 -0.362 16.6 0.95

BootT2b <-

do(1000) * diffmean(Time ~ Group, data = resample(Verizon, groups = Group))

confint(BootT2b, method = "perc")

name lower upper level method estimate

1 diffmean -16.6 -1.69 0.95 percentile -8.1

In a situation like this, the intervals produced by t.test()
are narrower, do the least to compensate for skew, under-
cover, and miss more often in one direction than in the
other.

Even if these methods are not presented to students,
it is good for instructors to be at least somewhat familiar
with the issues involved and some of the methods that
have been developed to handle them.11 11 Tim C. Hesterberg. What

teachers should know about
the bootstrap: Resampling in
the undergraduate statistics
curriculum. The American
Statistician, 2015

5.8 Simulating sampling distributions

We conclude this chapter with one more use of sample().
If we treat a data frame as a population, sample() can
be used to draw random samples of a specified size to
illustrate the idea of a sampling distribution. We could
use this to illustrate the sampling distribution of a sample
mean, for example.

As an example, we will use the NHANES data. This data
set has been adjusted to reflect the sampling weights used
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in the American National Health and Nutrition Examina-
tion surveys and is a reasonably good approximation to a
simple random sample of size 10,000 from the US popula-
tion. For the purpose of this example, we will treat this as
the entire population and consider samples drawn from
it, focusing (for the moment) on the Age variable.

require(NHANES)

mean( ~ Age, data = NHANES) # population mean

[1] 36.7

We will consider samples of size 50 and size 200. This
can be used to demonstrate the role of sample size in the
sampling distribution.

mean( ~ Age, data = sample(NHANES, 50)) # mean of one sample

[1] 34.1

mean( ~ Age, data = sample(NHANES, 50)) # mean of another sample

[1] 38.4

# We use bind_rows() to combine two sampling distributions

# (with different sample sizes) into a single data frame to

# make graphical and numerical summaries easier.

SamplingDist <-

bind_rows(

do(2000) * c(mean = mean( ~ Age, data = sample(NHANES, 50)), n= 50),

do(2000) * c(mean = mean( ~ Age, data = sample(NHANES, 200)), n= 200)

)

mean( mean ~ n, data = SamplingDist) # mean of sampling distribution

50 200

36.7 36.8

sd( mean ~ n, data = SamplingDist) # SE from sampling distribution

50 200

3.14 1.60
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sd( ~ Age, data = NHANES) / c("50" = sqrt(50), "200" = sqrt(200)) # SE from formula

50 200

3.17 1.58

histogram( ~ mean | factor(n), data = SamplingDist,

nint = 50, density = TRUE)
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A similar approach can be used to create sampling
distributions in other situations.



6
What Students Need to Know About R
& How to Teach It

In Chapter 2, we give a brief orientation to the RStudio
IDE and what happens in each of its tabs and panels.
In Chapter 4, we show how to make use of a common More Info

Be sure to look at A Student’s
Guide to R as well. That little
book contains a brief summary
of all the commands needed to
perform the statistical analyses
typically seen in the first two
statistics courses.

template for graphical summaries, numerical summaries,
and modeling. In this chapter we cover some additional
things that are important for students to know about the
R language.

6.1 Two Questions

When we introduced the formula template in Chapter 4,
we presented two important questions to ask before con-
structing an R command. These questions are useful in
contexts beyond the formula template, and indeed for
computer systems beyond R, so we repeat them here.

Teaching Tip

When students have difficulty
accomplishing a task in R, make
sure they can answer these
questions before you show
them what to do. If they can-
not answer these questions,
then the primary problem is
not with R. If you do this con-
sistently, eventually, you will
find your students presenting
their R questions to you by an-
swering these two questions
and then asking “So how do I
get R to do that?" More likely,
once they have answered these
two questions, they will already
know how to get R to do what
they want – unless they are ask-
ing about functionality that you
have not yet presented.

1. What do you want R to do?

This will generally determine which R function to use.

2. What must R know to do that?

This will determine the inputs to the function.

When your students preface their questions about R
by telling you what they want R to do and what R needs
to know to that, then you know they have internalized
these two questions.
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6.2 Four Things to Know About R

As is true for most computer languages, R has to be used
on its terms. R does not learn the personality and style
of its users. Getting along with R is much easier if you
keep in mind (and remind your students about) a few key
features of the R language.

1. R is case-sensitive

Teaching Tip

Some students will be slow to
catch on to the importance of
capitalization. So you may have
to remind them several times
early on.

If you mis-capitalize something in R it won’t do
what you want. Unfortunately, there is not a consistent
convention about how capitalization should be used,
so you just have to pay attention when encountering
new functions and data sets.

2. Functions in R use the following syntax:

functionname( argument1, argument2, ... )
Teaching Tip

Introduce functions by em-
phasizing the questions What
do we want the computer to do?
and What information does the
computer need to compute this?
The answer to the first ques-
tion determines the function to
use. The answer to the second
question determines what the
arguments must be.

• The arguments are always surrounded by (round)
parentheses and separated by commas.
Some functions (like data()) have no required argu-
ments, but you still need the parentheses.

• If you type a function name without the parenthe-
ses, you will see the code for that function (this gen-
erally isn’t what you want unless you are curious
about how something is implemented).

3. TAB completion and arrows can improve typing speed
and accuracy.

If you begin a command and hit the TAB key, R and
RStudio will show you a list of possible ways to com-
plete the command. If you hit TAB after the opening
parenthesis of a function, RStudio will display the list
of arguments it expects.

The up and down arrows can be used to retrieve
past commands when working in the console.

4. If you see a + prompt, it means R is waiting for more
input. Caution!

Your students will sometimes
find themselves in a syntactic
hole from which they cannot
dig out. Teach them about the
ESC key early.

Often this means that you have forgotten a closing
parenthesis or made some other syntax error. If you
have messed up and just want to get back to the nor-
mal prompt, press the escape key and start the com-
mand fresh.
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6.3 Installing and Using Packages
Teaching Tip

If you set up an RStudio server,
you can install all of the pack-
ages you want to use. You can
even configure the server to
autoload packages you use
frequently. Students who use
R on their desktop machines
will need to know how to in-
stall and load these packages,
however.

R is open source software. Its development is supported
by a team of core developers and a large community
of users. One way that users support R is by providing
packages that contain data and functions for a wide va-
riety of tasks. As an instructor, you will want to select
a few packages that support the way you want to teach
your course.

If you need to install a package, most likely it will be
on CRAN, the Comprehensive R Archive Network. Be-
fore a package can be used, it must be installed (once per
computer or account) and loaded (once per R session).
Installing downloads the package software and prepares
it for use by compiling (if necessary) and putting its com-
ponents in the proper location for future use. Loading
makes a previously installed package available for use in
an R session.

For example, to use the mosaic package, we must first
install it:

install.packages("mosaic") # fetch package from CRAN

Once the package has been installed it must be loaded to
make it available in the current session or file using

Teaching Tip

The use of library() is more
common in this situation, but
we find that students remember
the word require() better. For
their purposes, the two are es-
sentially the same. The biggest
difference is how they respond
when a package cannot be
loaded (usually because it has
not been installed). require()
generates a warning message
and returns a logical value that
can be used when program-
ming. library() generates an
error when the package cannot
be loaded.

library(mosaic) # load the package before use

library(mosaicData) # load data sets too

or

require(mosaic) # alternative way to load

require(mosaicData) # load data sets too

More Info

Even though the command
is called library(), the thing
loaded is a package, not a li-
brary.

Caution!
Remember that in RMarkdown
and Rnw files, any packages
you use must be loaded within
the file.

The Packages tab in RStudio makes installing and load-
ing packages particularly easy and avoids the need for
install.packages() for packages on CRAN, and makes
loading packages into the console as easy as selecting
a check box. The require() (or library()) function
is still needed to load packages within RMarkdown,
knitr/LATEX, and script files.

If you are running on a machine where you don’t have
privileges to write to the default library location, you can

http://www.R-project.org/
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install a personal copy of a package. If the location of
your personal library is first in R_LIBS, this will probably
happen automatically. If not, you can specify the location
manually:

install.packages("mosaic", lib="~/R/library")

CRAN is not the only repository of R packages. Bio-
conductor is another large and popular repository, espe-
cially for biological applications, and increasingly authors
are making packages available via github. For example,
you can also install the mosaic package using

# if you haven't already installed devtools

install.packages("devtools")

require(devtools)

install_github("ProjectMOSAIC/mosaic")

Occasionally you might find a package of interest that
is not available via a repository like CRAN or Bioconduc-
tor. Typically, if you find such a package, you will also
find instructions on how to install it. If not, you can usu-
ally install directly from the zipped up package file.

# repos = NULL indicates to use a file, not a repository

install.packages('some-package.tar.gz', repos=NULL)

From this point on, we will assume that the mosaic
package has been installed and loaded.

6.4 Getting Help

If something doesn’t go quite right, or if you can’t re-
member something, it’s good to know where to turn for
help. In addition to asking your friends and neighbors,
you can use the R help system.

http://www.R-project.org/
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6.4.1 ?

To get help on a specific function or data set, simply pre-
cede its name with a ?:

?log # help for the log function

?HELPrct # help on a data set in the mosaic package

This will give you the documentation for the object you
are interested in.

6.4.2 apropos()

If you don’t know the exact name of a function, you can
give part of the name and R will find all functions that
match. Quotation marks are mandatory here. More Info

Notice that tally appears
twice. That is because there
are two tally() functions,
one in the mosaic package and
one in the dplyr package. The
find() function can be used
to determine which package(s)
a function belongs to. In this
case, the mosaic package takes
care of navigating among the
two versions of tally(). In
other cases, you may need to
explicitly specify which pack-
age’s function you want.

apropos('tally') # must include quotes. single or double.

[1] "statTally" "tally" "tally"

6.4.3 ?? and help.search()

If that fails, you can do a broader search using ?? or
help.search(), which will find matches not only in the
names of functions and data sets, but also in the docu-
mentation for them. Quotation marks are optional here.

6.4.4 Examples and Demos

Many functions and data sets in R include example code
demonstrating typical uses. For example, Not all package authors are

equally skilled at creating ex-
amples. Some of the examples
are nonexistent or next to use-
less, others are excellent.

example(histogram)

will generate a number of example plots (and provide
you with the commands used to create them). Examples
such as this are intended to help you learn how specific R
functions work. These examples also appear at the end of
the documentation for functions and data sets.
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The mosaic package (and some other packages as
well) also includes demos. Demos are bits of R code that
can be executed using the demo() command with the
name of the demo. To see how demos work, give this a
try:

demo(lattice)

Demos are intended to illustrate a concept or a method
and are independent of any particular function or data
set.

You can get a list of available demos using

demo() # all demos

demo(package='mosaic') # just demos from mosaic package

6.5 Data

6.5.1 Data Frames

Data sets are usually stored in a special structure called a
data frame. Teaching Tip

Students who collect their own
data, especially if they store
it in Excel, are unlikely to put
data into the correct format
unless explicitly taught to do
so.

Data frames have a 2-dimensional structure.

• Rows correspond to observational units (people,
animals, plants, or other objects we are collecting
data about).

• Columns correspond to variables (measurements
collected on each observational unit). Teaching Tip

To help students keep variables
and data frames straight, and
to make it easier to remember
the names, we have adopted
the convention that data frames
in the mosaicData package are
capitalized and variables (usu-
ally) are not. This convention
has worked well, and you may
wish to adopt it for your data
sets as well.

The Births78 data frame contains four variables mea-
sured for each day in 1978. There are several ways we can
get some idea about what is in the Births78 data frame.



start teaching with r 101

head(Births78) # show the first few rows

date births dayofyear wday

1 1978-01-01 7701 1 Sun

2 1978-01-02 7527 2 Mon

3 1978-01-03 8825 3 Tues

4 1978-01-04 8859 4 Wed

5 1978-01-05 9043 5 Thurs

6 1978-01-06 9208 6 Fri

sample(Births78, 4) # show 4 randomly selected rows

date births dayofyear wday orig.id

105 1978-04-15 7527 105 Sat 105

287 1978-10-14 8554 287 Sat 287

149 1978-05-29 7780 149 Mon 149

320 1978-11-16 9568 320 Thurs 320

summary(Births78) # provide summary info about each variable

date births dayofyear

Min. :1978-01-01 Min. : 7135 Min. : 1

1st Qu.:1978-04-02 1st Qu.: 8554 1st Qu.: 92

Median :1978-07-02 Median : 9218 Median :183

Mean :1978-07-02 Mean : 9132 Mean :183

3rd Qu.:1978-10-01 3rd Qu.: 9705 3rd Qu.:274

Max. :1978-12-31 Max. :10711 Max. :365

wday

Sun :53

Mon :52

Tues :52

Wed :52

Thurs:52

Fri :52

Sat :52

inspect(Births78) # provide summary info about each variable

categorical variables:

name class levels n missing distribution

1 wday ordered 7 365 0 Sun (14.5%), Mon (14.2%), Tues (14.2%) ...

quantitative variables:

name class min Q1 median Q3 max mean sd n missing



102 pruim, horton & kaplan

1 births integer 7135 8554 9218 9705 10711 9132 818 365 0

2 dayofyear integer 1 92 183 274 365 183 106 365 0

time variables:

name class first last min_diff max_diff n missing

1 date POSIXct 1978-01-01 1978-12-31 1 1 365 0

str(Births78) # show the structure of any R object

'data.frame': 365 obs. of 4 variables:

$ date : POSIXct, format: "1978-01-01" ...

$ births : int 7701 7527 8825 8859 9043 9208 8084 7611 9172 9089 ...

$ dayofyear: int 1 2 3 4 5 6 7 8 9 10 ...

$ wday : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tues"<..: 1 2 3 4 5 6 7 1 2 3 ...

The output from str() is also available in the Environment
tab.

In interactive mode, you can also try

?Births78

to access the documentation for the data set. This is also
available in the Help tab. Finally, the Environment tab pro-
vides a list of data in the global environment. Clicking on
one of the data sets brings up the same data viewer as

View(Births78)

We can gain access to a single variable in a data frame
using the $ operator or, alternatively, using the with()
function.

dataframe$variable

with(dataframe, variable)

For example, either of

Births78$births

with(Births78, births)

will show the contents of the births variable in Births78
data set. As we will see, there are rela-

tively few instances where one
needs to use the $ operator.

Listing the entire set of values for a particular variable
isn’t very useful for a large data set. We would prefer to
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compute numerical or graphical summaries. We’ll do that
shortly.

6.5.2 The Perils of attach()
Caution!

Avoid the use of attach().The attach() function in R can be used to make objects
within data frames accessible in R with fewer keystrokes,
but we strongly discourage its use, as it often leads to
name conflicts and other complications. The Google R
Style Guide1 echoes this advice, stating that 1 http://google-styleguide.

googlecode.com/svn/trunk/
google-r-style.htmlThe possibilities for creating errors when using attach() are

numerous. Avoid it.

It is far better to directly access variables using the $ syn-
tax or to use functions that allow you to avoid the $ oper-
ator.

6.5.3 Data in Packages

Data sets in R packages are the easiest to deal with. In

Teaching Tip

Start out using data in packages
and show students how to
import their own data once
they understand how to work
with data.

section 6.5.4, we’ll describe how to load your own data
into R and RStudio, but we recommend starting with data
in packages, and that is what we will do here, too. Once
students know how to work with data and what data in R
are supposed to look like, they will be better prepared to
import their own data sets.

Many packages contain data sets. You can see a list of
all data sets in all loaded packages using

data()

You can optionally choose to restrict the list to a single
package:

data(package="mosaic")

Typically you can use data sets by simply typing More Info

This depends on the package.
Most package authors set up
their packages with “lazy load-
ing” of data. If they do not,
then you need to use data()
explicitly.

their names. But if you have already used that name for
something or need to refresh the data after making some
changes you no longer want, you can explicitly load the
data using the data() function with the name of the data
set you want.

http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
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data(Births78)

There is no visible effect of this command, but the Births78 Caution!
If two packages include data
sets with the same name, you
may need to specify which
package you want the data
from with data(Births78,
package="mosaicData")

data frame has now been reloaded from the mosaicData
package and is ready for use. Anything you may have
previously stored in a variable with this same name is
replaced by the version of the data set stored with in the
mosaicData package.

6.5.4 Using Your Own Data

Teaching Tip

Start out using data from pack-
ages and focusing on what R
can do with the data. Later,
once students are familiar with
R and understand the format
required for data, teach stu-
dents how to import their own
data.

Eventually, students will want to move from using ex-
ample data sets in R packages to using data they find or
collect themselves. When this happens will depend on the
type of students you have and the type of course you are
teaching.

R provides the functions read.csv() (for comma
separated values files), read.table() (for white space
delimited files) and load() (for loading data in R’s na-
tive format). The mosaic package includes a function
called read.file() that uses slightly different default
settings and infers whether it should use read.csv(),
read.table(), or load() based on the file name.

Since most software packages can export to csv for-
mat, this has become a sort of lingua franca for moving
data between packages. Data in excel, for example, can be
exported as a csv file for subsequent reading in R. There
is a danger in doing this, however, since some types of
data don’t export from Excel they way you might expect.
A safer way to read excel files is to use the read_excel()
function from the readxl package. The haven package in-
cludes utilities for reading data in several other formats
that are exported from other statistics packages like SAS
and Stata.

Some of these data ingesting functions accept a URL
as well as a file name, which provides an easy way to
distribute data via the Internet:
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births <-

read.table('http://www.calvin.edu/~rpruim/data/births.txt', header=TRUE)

head(births) # live births in the US each day of 1978.

date births datenum dayofyear

1 1/1/78 7701 6575 1

2 1/2/78 7527 6576 2

3 1/3/78 8825 6577 3

4 1/4/78 8859 6578 4

5 1/5/78 9043 6579 5

6 1/6/78 9208 6580 6

We can omit the header=TRUE if we use read.file()
births <-

read.file('http://www.calvin.edu/~rpruim/data/births.txt')

Reading data with read.table()

6.5.5 Importing Data in RStudio
Teaching Tip

Remind students that the 2-step
process (upload, then import)
works much like images in
Facebook. First you upload
them to Facebook, and once
they are there you can include
them in posts, etc.

The RStudio interface provides some GUI tools for load-
ing data. If you are using the RStudio server, you will first
need to upload the data to the server (in the Files tab),
and then import the data into your R session (in the Envi-
ronment tab).

If you are running the desktop version, the upload
step is not needed.

6.5.6 Working with Pretabulated Data Even if you use RStudio GUI for
interactive work, you will want
to know how to use functions
like read.csv() for working in
RMarkdown, or knitr/LATEX
files.

Because categorical data is so easy to summarize in a ta-
ble, often the frequency or contingency tables are given
instead. You can enter these tables manually using a com-
bination of c(), rbind() and cbind():

Teaching Tip

This is an important technique
if you use a text book that
presents pre-tabulated cate-
gorical data.

myrace <- c( NW=67, W=467 ) # c for combine or concatenate

myrace

NW W

67 467
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mycrosstable <- rbind(

NW = c(clerical=15, const=3, manag=6, manuf=11,

other=5, prof=7, sales=3, service=17),

W = c(82,17,49,57,63,98,35,66)

)

mycrosstable

clerical const manag manuf other prof sales service

NW 15 3 6 11 5 7 3 17

W 82 17 49 57 63 98 35 66

Replacing rbind() with cbind() will allow you to give
the data column-wise instead.

Teaching Tip

If plotting pre-tabulated cat-
egorical data is important,
you probably want to provide
your students with a wrapper
function to simplify all this.
We generally avoid this situ-
ation by provided the data in
raw format or by presenting
an analysing the data in ta-
bles without using graphical
summaries.

This arrangement of the data would be sufficient for
applying the Chi-squared test, but it is not in a format
suitable for plotting with lattice. Our cross table is still
missing a bit of information – the names of the variables
being stored. We can add this information if we convert it
to a table:

class(mycrosstable)

[1] "matrix"

mycrosstable <- as.table(mycrosstable)
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# mycrosstable now has dimnames, but they are unnamed

dimnames(mycrosstable)

[[1]]

[1] "NW" "W"

[[2]]

[1] "clerical" "const" "manag" "manuf" "other"

[6] "prof" "sales" "service"

# let's add meaninful dimnames

names(dimnames(mycrosstable)) <- c('race', 'sector')

mycrosstable

sector

race clerical const manag manuf other prof sales service

NW 15 3 6 11 5 7 3 17

W 82 17 49 57 63 98 35 66

We can use barchart() instead of bargraph() to plot
data already tabulated in this way, but first we need yet
one more transformation.

head(as.data.frame(mycrosstable))

race sector Freq

1 NW clerical 15

2 W clerical 82

3 NW const 3

4 W const 17

5 NW manag 6

6 W manag 49
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barchart( Freq ~ sector | race,

data=as.data.frame(mycrosstable),

auto.key=list(space='right'),

scales=list(x=list(rot=45))

)
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6.5.7 Developing Good Data Habits

However you teach students to collect and import their
data, students will need to be trained to follow good data
organization practices:

• Choose good variables names.

• Put variables names in the first row.

• Use each subsequent row for one observational unit.

• Give the resulting data frame a good name.

Some scientists may be disappointed that R data frames
don’t keep track of additional information, like the units
in which the observations are recorded. This sort of infor-
mation should be recorded, along with a description of
the protocols used to collect the data, observations made
during the data recording process, etc. This information
should be maintained in a lab notebook or a codebook.

6.6 Review of R Commands

Here is a brief summary of the commands introduced in this chapter.

require(mosaic) # load the mosaic package

require(mosaicData) # load the mosaic data sets

answer <- 42 # store the number 42 in a variable named answer

log(123); log10(123); sqrt(123) # some standard numerical functions

x <- c(1,2,3) # make a vector containing 1, 2, 3 (in that order)

data(iris) # (re)load the iris data set

names(iris) # see the names of the variables in the iris data

head(iris) # first few rows of the iris data set

sample(iris, 3) # 3 randomly selected rows of the iris data set

inspect(iris) # summarize each variable in the iris data set

summary(iris) # summarize each variable in the iris data set

str(iris) # show the structure of the iris data set

mydata <- read.table("file.txt") # read data from a text file

mydata <- read.csv("file.csv") # read data from a csv file

mydata <- read.file("file.txt") # read data from a text or csv file

require(readxl)

mydata <- read_excel("file.xlsx") # read data from an Excel file



110 pruim, horton & kaplan

6.7 Exercises

6.1 The table below is from a study of nighttime lighting
in infancy and eyesight (later in life).

no myopia myopia high myopia
darkness 155 15 2

nightlight 153 72 7

full light 34 36 3

a) Recreate the table in R.

b) What percent of the subjects slept with a nightlight as
infants?

There are several ways to do this. You could use R as
a calculator to do the arithmetic. You can save some
typing if you use the function tally(). See ?tally for
documentation.

c) Create a graphical representation of the data. What
does this plot reveal?

6.2 Enter the following small data set in an Excel or
Google spreadsheet and import the data into RStudio.



7
What Instructors Need to Know about R

You may find that some of
these things are useful for your
students to know as well. That
will depend on the goals for
your course and the abilities of
your students. In higher level
courses, much of the material in
this chapter is also appropriate
for students.

We recommend keeping the amount of R that students
need to learn to a minimum, and choosing functions that
support a formula interface whenever possible to keep
the required functions syntactically similar. But there
are some additional things that instructors (and some
students) should know about R. We outline some of these
things in this chapter.

7.1 Some Workflow Suggestions

Our workflow advice can be summarized in one short
sentence:

Think like a programmer.

We don’t really think of our
classroom use of R as program-
ming since we use R in a mostly
declarative rather than algorith-
mic way.

It doesn’t take sophisticated programming skills to
be good at using R. In fact, most uses of R for teaching
statistics can be done working one step at a time, where
each line of code does one complete and useful task. Af-
ter inspecting the output (and perhaps saving it for fur-
ther computation later), one can proceed to the next oper-
ation.

Nevertheless, we can borrow from the collective wis-
dom of the programming community and adopt some
practices that will make our experience more pleasurable,
more efficient, and less error-prone.

• Store your code in a file.
It can be tempting to do everything in the console. But
the console is ephemeral. It is better to get into the
habit of storing code in files. Get in the habit (and get
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your students in the habit) of working with R scripts
and especially RMarkdown files. More Info

R can be used to create exe-
cutable scripts. Option parsing
and handling is supported with
the optparse package.

You can execute all the code in an R script file using

source("file.R")

RStudio has additional options for executing some or
all lines in a file. See the buttons in the tab for any R
script, RMarkdown or Rnw file. (You can create a new
file in the main File menu.)

If you work at the console’s interactive prompt and
later wish you had been putting your commands into a
file, you can save your past commands with

savehistory("someRCommandsIalmostLost.R")

In RStudio, you can selectively copy portions of your
history to a script file (or the console) using the History
tab.

• Use meaningful names.
Rarely should objects be named with a single letter.
Adopt a personal convention regarding case of let-

ters. This will mean you have one less thing to remem-
ber when trying to recall the name of an object. For
example, in the mosaicData package, all data frames
begin with a capital letter. Most variables begin with a
lower case letter (a few exceptions are made for some
variables with names that are well-known in their capi-
talized form).

• Adopt reusable idioms.
Computer programmers refer to the little patterns

that recur throughout their code as idioms. For exam-
ple, here is a “compute, save, display” idiom.

# compute, save, display idiom

footModel <- lm(length ~ width, data=KidsFeet); footModel

Call:

lm(formula = length ~ width, data = KidsFeet)

Coefficients:

(Intercept) width

9.82 1.66
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# alternative that reflects the order of operations

lm(length ~ width, data=KidsFeet) -> footModel; footModel

Call:

lm(formula = length ~ width, data = KidsFeet)

Coefficients:

(Intercept) width

9.82 1.66

Often there are multiple ways to do the same thing
in R, but if you adopt good programming idioms, it
will be clearer to both you and your students what you
are doing.

• Write reusable functions.
Learning to write your own functions (see Sec-

tion 7.7) will greatly increase your efficiency and also
help you understand better how R works. This, in turn,
will help you debug your students error messages.
(More on error messages in 7.10.) It also makes it pos-
sible for you to simplify tasks you want your students
to be able to do in R. That is how the mosaic package
originated – as a collection of tools we had assembled
over time to make teaching and learning easier.

• Comment your code.
It’s amazing what you can forget. The comment

character in R is #. If you are working in RMarkdown
or Rnw files, you can also include nicely formatted text
to describe what you are doing and why.

7.2 Primary R Data Structures

Everything in R is an object of a particular kind and un-
derstanding the kinds of objects R is using demystifies
many of the messages R produces and unexpected be-
havior when commands do not work the way you (or
your students) were expecting. We won’t attempt to give
a comprehensive description of R’s object taxonomy here,
but will instead focus on a few important features and
examples.
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7.2.1 Objects and Classes

In R, data are stored in objects. Each object has a name,
contents, and a class. The class of an object tells what kind
of a thing it is. The class of an object can be queried using
class()

More Info

Many objects also have at-
tributes which contain addi-
tional information about the
object, but unless you are doing
programming with these ob-
jects, you don’t need to worry
much about them.

class(KidsFeet)

[1] "data.frame"

class(KidsFeet$birthmonth)

[1] "integer"

class(KidsFeet$length)

[1] "numeric"

class(KidsFeet$sex)

[1] "factor"

str(KidsFeet) # show the class for each variable

'data.frame': 39 obs. of 8 variables:

$ name : Factor w/ 36 levels "Abby","Alisha",..: 10 24 36 20 23 34 13 4 14 8 ...

$ birthmonth: int 5 10 12 1 2 3 2 6 5 9 ...

$ birthyear : int 88 87 87 88 88 88 88 88 88 88 ...

$ length : num 24.4 25.4 24.5 25.2 25.1 25.7 26.1 23 23.6 22.9 ...

$ width : num 8.4 8.8 9.7 9.8 8.9 9.7 9.6 8.8 9.3 8.8 ...

$ sex : Factor w/ 2 levels "B","G": 1 1 1 1 1 1 1 2 2 1 ...

$ biggerfoot: Factor w/ 2 levels "L","R": 1 1 2 1 1 2 1 1 2 2 ...

$ domhand : Factor w/ 2 levels "L","R": 2 1 2 2 2 2 2 2 2 1 ...

More Info

One difference between a factor
and a character is that a fac-
tor knows the possible values,
even if some them do not occur.
Sometimes this is an advantage
(tallying empty cells in a table)
and sometimes it is a disadvan-
tage (when factors are used as
unique identifiers).

From this we see that KidsFeet is a data frame and
that the variables are of different types (integer, numeric,
and factor). These are the kinds of variables you are most
likely to encounter, although you may also see variables
that are logical (true or false) or character (text) as well.

Factors are the most common way for categorical data
to be stored in R, but sometimes the character class is
better. The class of an object determines what things can
be done with it and how it appears when printed, plotted,
or displayed in the console.



start teaching with r 115

7.2.2 Containers

The situation is actually a little bit more complicated.
The birthmonth variable in KidsFeet is not a single in-
teger but a collection of integers. So we can think of
birthmonth as a kind of container holding a number of
integers. There is more than one kind of container in More Info

Even when we only have a
single integer, R will treat it
like a container of integers with
only one integer in it.

R. The containers used for variables in a data frame are
called vectors. The items in a vector are ordered (starting
with 1) and must all be of the same type.

Vectors can be created using the c() function:

c(2, 3, 5, 7)

[1] 2 3 5 7

c("Abe", "Betty", "Chan")

[1] "Abe" "Betty" "Chan"

c(1.2, 3.2, 4.5)

[1] 1.2 3.2 4.5

If you attempt to put different types of objects into a vec-
tor, R will attempt to convert them all to the same type of
object. If it is unable to do so, it will generate an error.

Caution!
When reading data created in
other software (like Excel) or
stored in CSV files, it is impor-
tant to know how missing data
were indicated, otherwise, the
code for missing data may be
interpreted as a character, caus-
ing all the other items in that
column to be converted to char-
acter values as well, and losing
the important information that
some of the data were missing.

x <- c(1, 1.1, 1.2); x # convert integer to numeric

[1] 1.0 1.1 1.2

class(x)

[1] "numeric"

y <- c(TRUE, FALSE, 0, 1, 2); y # logicals converted to numeric

[1] 1 0 0 1 2

class(y)

[1] "numeric"

z <- c(1, TRUE, 1.2, "vector"); z # all converted to character

[1] "1" "TRUE" "1.2" "vector"

class(z)

[1] "character"
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Digging Deeper

A factor can be ordered or un-
ordered (which can affect how
statistics tests are performed
but otherwise does not matter
much). The default is for fac-
tors to be unordered. Whether
the factors are ordered or un-
ordered, the levels will appear
in a fixed order – alphabetical
by default. The distinction be-
tween ordered and unordered
factors has to do with whether
this order is meaningful or
arbitrary.

Factors can be created by wrapping a vector with
factor():

w <- factor(x); w

[1] 1 1.1 1.2

Levels: 1 1.1 1.2

class(w)

[1] "factor"

Notice how factors display the levels (possible values) as
well as the values themselves. When categorical data are
coded as integers, it is important to remember to convert
them to factors in this way for certain statistical proce-
dures and some plots.

Patterned integer or numeric vectors can be created
using the : operator or the seq() function.
1:10

[1] 1 2 3 4 5 6 7 8 9 10

seq(1, 10, by=0.5)

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

[12] 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Individual items in a vector can be accessed or as-
signed using the square bracket operator:

w[1]

[1] 1

Levels: 1 1.1 1.2

x[2]

[1] 1.1

y[3]

[1] 0

Missing values are coded as NA (not available). Asking
for an entry “off the end” of a vector returns NA. Assign-
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ing a value “off the end” of a vector results in the vector
being lengthened so that the new value can be stored in
the appropriate location.

z[5] # this is not an error, but returns NA (missing)

[1] NA

q <- 1:5

q

[1] 1 2 3 4 5

q[10] <- 10 # elements 6 thru 9 will be filled with NA

q

[1] 1 2 3 4 5 NA NA NA NA 10

R also provides some more unusual (but very useful)
features for accessing elements in a vector.
letters # alphabet

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n"

[15] "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"
More Info

letters is a built-in character
vector containing the lower
case letters. LETTERS contains
capitals.

x <- letters[1:10]; x # first 10 letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

x[2:4] # select items 2 through 4

[1] "b" "c" "d"

x[2:4] <- c("X","Y","Z"); x # change items 2 through 4

[1] "a" "X" "Y" "Z" "e" "f" "g" "h" "i" "j"

y <- (1:10)^2; y # first 10 squares

[1] 1 4 9 16 25 36 49 64 81 100

y [ y > 20 ] # select the items greater than 20

[1] 25 36 49 64 81 100

The last item deserves a bit of comment. The expression
inside the brackets evaluates to a vector of logical values.
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y > 20

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

The logical values are then used to select (true) or
deselect (false) the items in the vector, producing a new
(and potentially shorter) vector. If the number of logical
supplied is less than the length of the vector, the values
are recycled (repeated).

y[ c(TRUE,FALSE) ] # every other

[1] 1 9 25 49 81

y[ c(TRUE,FALSE,FALSE) ] # every third

[1] 1 16 49 100

A matrix is a 2-dimensional table of values that all
have the same type. As with vectors, all of the items in a
matrix must be of the same type. But matrices are two-
dimensional – each item is located in a row and column.
An array is a multi-dimensional version of a matrix. Ma-
trices and arrays are important containers for statistical
work, but less likely to be encountered by beginners.

M <- matrix(1:15, nrow=3); M # a 3 x 5 matrix

[,1] [,2] [,3] [,4] [,5]

[1,] 1 4 7 10 13

[2,] 2 5 8 11 14

[3,] 3 6 9 12 15

The dimensions of an array, matrix or data frame can be
obtained using dim() or nrow() and ncol().

dim(M)

[1] 3 5

dim(KidsFeet)

[1] 39 8

nrow(KidsFeet)

[1] 39
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ncol(KidsFeet)

[1] 8

More Info

In official R parlance, the dis-
tinction we make between
vectors and lists is really the
distinction between atomic vec-
tors and lists (which are also
called generic vectors). In fact,
they must all be of the same
atomic type. Atomic vectors are
are the basic building blocks
for R. It is not possible to store
more complicated objects (like
data frames) in a vector, but
they can be stored in a list.

Another commonly used container in R is a list. We
have already seen a few examples of lists used as argu-
ments to lattice plotting functions. Lists are also or-
dered, but the items in a list can be objects of any type,
and they need not all be the same type. Behind the scenes,
a data frame is a list of vectors with the restriction that
each vector must have the same length (contain the same
number of items).

Lists can be created using the list() function.

l <- list(1, "two", 3.2, list(1, 2)); l

[[1]]

[1] 1

[[2]]

[1] "two"

[[3]]

[1] 3.2

[[4]]

[[4]][[1]]

[1] 1

[[4]][[2]]

[1] 2

length(l) # Note: l has 4 elements, not 5

[1] 4

Items in a list can be accessed with the double square
bracket ([[ ]]).

l[[1]]

[1] 1

Using a single square bracket ([ ]) instead returns a sub-
list rather than an element. So l[[1]] is a vector, but l[1]
is a list containing a vector.
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l[1]

[[1]]

[1] 1

Both vectors and lists can be named. The names can
be created when the vector or list is created or they can be
added later. Elements of vectors and lists can be accessed
by name as well as by position.

x <- c(one=1, two=2, three=3); x

one two three

1 2 3

y <- list(a=1, b=2, c=3); y

$a

[1] 1

$b

[1] 2

$c

[1] 3

x["one"]

one

1

y[["a"]] # retrieve items from a list with [[ ]]

[1] 1

names(x)

[1] "one" "two" "three"

names(x) <- c("A", "B", "C"); x

A B C

1 2 3

The access operators – [ ] and [[ ]] for lists – are
actually functions in R. This has some important conse-
quences:
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• Accessing elements in a vector is slower than in a lan-
guage like C/C++ where access is done by pointer
arithmetic.

• These functions also have named arguments, so you
can see code like the following

M

[,1] [,2] [,3] [,4] [,5]

[1,] 1 4 7 10 13

[2,] 2 5 8 11 14

[3,] 3 6 9 12 15

M[5]

[1] 5

M[,2] # this is 1-d (a vector)

[1] 4 5 6

M[,2, drop=FALSE] # this is 2-d (still a matrix)

[,1]

[1,] 4

[2,] 5

[3,] 6

Data frames can be constructed by supplying data.frame()
with the variables (as vectors):

ddd <- data.frame(number=1:5, letter=letters[1:5])

7.2.3 Vectorized functions

Vectors are so important in R that they deserve some ad-
ditional discussion. Many R functions and operations are
“vectorized” and can be applied not just to an individual
value but to an entire vector, in which case they are ap-
plied componentwise and return a vector of transformed
values. Most of the commonly used functions from math-
ematics are available and work this way.
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x <- 1:5; y <- seq(10, 60, by=10)

x

[1] 1 2 3 4 5

y

[1] 10 20 30 40 50 60

y + 1 # add 1 to each element

[1] 11 21 31 41 51 61

x * 10 # multiply each element by 10

[1] 10 20 30 40 50

x < 3 # check whether each is less than 3

[1] TRUE TRUE FALSE FALSE FALSE

x^2 # square each element

[1] 1 4 9 16 25

sqrt(x) # square root of each element

[1] 1.00 1.41 1.73 2.00 2.24

log(x) # natural log

[1] 0.000 0.693 1.099 1.386 1.609

log10(x) # base 10 log

[1] 0.000 0.301 0.477 0.602 0.699

Vectors can be combined into a matrix using rbind() or
cbind(). This can facilitate side-by-side comparisons.

# compare round() and signif() by binding row-wise into a matrix

z <- rnorm(5); z

[1] -0.5605 -0.2302 1.5587 0.0705 0.1293

rbind(round(z, digits=3), signif(z, digits=3))

[,1] [,2] [,3] [,4] [,5]

[1,] -0.56 -0.23 1.56 0.0710 0.129

[2,] -0.56 -0.23 1.56 0.0705 0.129
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7.2.4 Functions that act on vectors as vectors

Other functions, including many statistical functions,
are designed to compute a single number (technically, a
vector of length 1) from an entire vector.

z <- rnorm(100)

# basic statistical functions; notice the use of names

c(mean=mean(z), sd=sd(z), var=var(z), median=median(z))

mean sd var median

0.0607 0.9089 0.8260 -0.0114

range(z) # range returns a vector of length 2

[1] -2.31 2.19

x <- 1:10

c(sum=sum(x), prod=prod(x)) # sums and products

sum prod

55 3628800

Still other functions return vectors that are derived
from the original vector, but not as a componentwise
transformation.
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z <- rnorm(5); z

[1] -0.045 -0.785 -1.668 -0.380 0.919

sort(z); rank(z); order(z)

[1] -1.668 -0.785 -0.380 -0.045 0.919

[1] 4 2 1 3 5

[1] 3 2 4 1 5

x <- 1:10

rev(x) # reverse x

[1] 10 9 8 7 6 5 4 3 2 1

diff(x) # pairwise differences

[1] 1 1 1 1 1 1 1 1 1

ediff(x) # pairwise differences w/out changing length

[1] NA 1 1 1 1 1 1 1 1 1

cumsum(x) # cumulative sum

[1] 1 3 6 10 15 21 28 36 45 55

cumprod(x) # cumulative product

[1] 1 2 6 24 120 720 5040

[8] 40320 362880 3628800

Whether a function is vectorized or treats a vector as
a unit depends on its implementation. Usually, things are
implemented the way you would expect. Occasionally More Info

The Vectorize() function is
a useful tool for converting a
non-vectorized function into a
vectorized function.

you may discover a function that you wish were vector-
ized and is not. When writing your own functions, give
some thought to whether they should be vectorized, and
test them with vectors of length greater than 1 to make
sure you get the intended behavior.
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The operations listed below can be helpful when writ-
ing your own functions.

cumsum()
cumprod()
cummin()
cummax()

Returns vector of cumulative sums, products, min-
ima, or maxima.

pmin(x,y,...)
pmax(x,y,...)

Returns vector of parallel minima or maxima where
ith element is max or min of x[i], y[i], . . . .

which(x) Returns a vector of indices of elements of x that are
true. Typical use: which(y > 5) returns the indices
where elements of y are larger than 5.

any(x) Returns a logical indicating whether any elements
of x are true. Typical use: if (any(y > 5)) { ...}.

na.omit(x) Returns a vector with missing values removed.
unique(x) Returns a vector with repeated values removed.
table(x) Returns a table of counts of the number of occur-

rences of each value in x. The table is similar to a
vector with names indicating the values, but it is not
a vector.

paste(x,y,...,
sep=" ")

Pastes x and y together componentwise (as strings)
with sep between elements. Recycling applies.

7.3 Working with Data

In Section 6.5 we discussed using data in R packages,
and in Section 6.5.4 we discussed methods for bringing
your own data into R. In both of these scenarios, we have
assumed that the data had been entered and cleaned in
some other software and focussed primarily on data im-
port. In this section we discuss ways to create and ma-
nipulate data within R. But first we discuss a few more
details regarding importing data.

7.3.1 Finer control over data import

Even if you primarily use the
RStudio interface to import data,
it is good to know about the
command line methods since
these are required to import
data into scripts, RMarkdown,
and knitr/LATEX files.The na.strings argument can be used to specify codes

for missing values. Setting na.strings as in the following
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for reading csv files that might have been produced by
systems such as SAS.

someData <- read.csv('file.csv',

na.strings=c('NA','','.','-','na'))

SAS uses a period (.) to code missing data and some csv
exporters use ‘-’. If the above definition for na.strings,
or something like it, R will treat missing-data markers as
string data, instead of NA. This forces the entire variable to
be of character type even if it’s otherwise purely numeric.

By default, R will recode character data as a factor. If

More Info

The read.file() function in
the mosaic package uses this as
its default for na.strings.

you prefer to leave such variables in character format, you
can use More Info

This works with read.csv()
and read.table() as well.someData <- read.file('file.csv',

stringsAsFactors=FALSE)

Reading data with read.csv()

Even finer control can be obtained by manually set-
ting the class (type) used for each column in the file. In
addition, this speeds up the reading of the file. For a csv
file with four columns, we can declare them to be of class
integer, numeric, character, and factor with the following
command.

someData <- read.file('file.csv',

na.strings=c('NA','','.','-','na'),

colClasses=c('integer','numeric','character','factor'))

Reading data with read.csv()

7.3.2 Manually entering data

We have already seen that the c() function can be used to
combine elements into a single vector.

x <- c(1, 1, 2, 3, 5, 8, 13); x

[1] 1 1 2 3 5 8 13
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The scan() function can speed up data entry in the
console by allowing you to avoid the commas. Individ-
ual values are separated by white space or new lines. A
blank line is used to signal the end of the data. By de-
fault, scan() is expecting numeric data, but it is possible
to tell scan() to expect something else, like character data
(i.e., text). There are other options for data types, but Caution!

When using scan() be sure to
remember to save your data
somewhere. Otherwise you will
have to type it again.

numerical and text data handle the most important cases.
See ?scan for more information and examples.

7.3.3 Simulating samples from distributions

R has functions that make it simple to sample from a
wide range of distributions. Each of these functions be-
gins with the letter ‘r’ (for random) followed by the name
of the distribution (often abbreviated somewhat). The
arguments to the function specify the size of the sample
desired and any parameter values required for the dis-
tribution. For example, to simulate selecting a sample
of size 12 from a normal population with mean 100 and
standard deviation 10, use
rnorm(12, mean=100, sd=10)

[1] 94.2 106.1 83.8 99.4 105.2 103.0 101.1 93.6 91.5

[10] 89.8 101.2 90.5

Functions for sampling from other distributions in-
clude rbinom(), rchisq(), rt(), rf(), rhyper(), etc.

It is also easy to sample (with or without replacement)
from existing data using sample() and resample().

x <- 1:10

# random sample of size 5 from x (no replacement)

sample(x, size=5)

[1] 4 7 10 9 6

# a different random sample of size 5 from x (no replacement)

sample(x, size=5)

[1] 8 3 2 5 10

# random sample of size 5 from x (with replacement)

resample(x, size=5)

[1] 6 8 2 5 5
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Using resample() makes it easy to simulate small discrete
distributions. For example, to simulate rolling 20 dice, we
could use

resample(1:6, size=20)

[1] 6 6 6 5 6 4 4 3 3 1 4 6 1 1 1 5 5 6 3 1

For working with cards, the mosaicData package pro-
vides a vector named Cards and deal() as an alternative
name for sample().

deal(Cards, 5) # poker hand

[1] "9H" "AH" "8C" "8D" "QC"

deal(Cards, 13) # bridge, anyone?

[1] "5C" "9D" "AS" "KC" "4C" "7H" "2D" "6C" "QS" "KH" "9S"

[12] "9H" "2S"

If you want to sort the hands nicely, you can create a fac-
tor from Cards first:
hand <- deal(factor(Cards, levels=Cards), 13)

sort(hand) # sorted by suit, then by denomination

[1] 2C 7C 8C 7D 8D 10D 4H 9H QH AH 2S 10S AS

52 Levels: 2C 3C 4C 5C 6C 7C 8C 9C 10C JC QC KC AC ... AS

Example 7.1. For teaching purposes it is sometimes
nice to create a histogram that has the approximate shape
of some distribution. One way to do this is to randomly
sample from the desired distribution and make a his-
togram of the resulting sample.

x1 <- rnorm(500, mean=10, sd=2)

histogram( ~ x1, width=.5)
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This works, but the resulting plot has a fair amount of
noise.

The ppoints() function returns evenly spaced prob-
abilities and allows us to obtain theoretical quantiles of
the normal distribution instead. The resulting plot now il-
lustrates the idealized sample from a normal distribution.

x2 <- qnorm(ppoints(500), mean=10, sd=2)

histogram( ~ x2, width=.5)
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This is not what real data will look like (even if it comes
from a normal population), but it can be better for illus-
trative purposes to remove the noise. �

7.3.4 Saving Data

write.table() and write.csv() can be used to save data
from R into delimited flat files.

ddd <- data.frame(number=1:5, letter=letters[1:5])

write.table(ddd, "ddd.txt")

write.csv(ddd, "ddd.csv")



130 pruim, horton & kaplan

Data can also be saved in native R format. Saving data
sets (and other R objects) using save() has some advan-
tages over other file formats:

More Info

If you want to save an R ob-
ject but not its name, you can
use saveRDS() and choose its
name when you read it with
readRDS().

• Complete information about the objects is saved, in-
cluding attributes.

• Data saved this way takes less space and loads much
more quickly.

• Multiple objects can be saved to and loaded from a
single file.

The downside is that these files are only readable in R.

abc <- "abc"

ddd <- data.frame(number=1:5, letter=letters[1:5])

# save both objects in a single file

save(ddd, abc, file="ddd.rda")

# load them both

load("ddd.rda")

For more on importing and exporting data, especially
from other formats, see the R Data Import/Export manual
available on CRAN.

7.4 Manipulating Data Frames with dplyr

There are several ways to manipulate data frames in R.
The approach illustrated here relies heavily on the func-
tions in the dplyr package. This package is loaded when
the mosaic package is loaded. The dplyr package defines
five primary operations on a data frame

1. mutate() – add or change variables

2. select() – choose a subset of columns

3. filter() – choose a subset of rows

4. summarise() – reduce the entire data frame to a sum-
mary row

5. arrange() – reorder the rows

http://www.R-project.org/


start teaching with r 131

These become especially powerful when combined with a
sixth command, group_by().

6. group_by() – split the data frame into multiple subsets

Additional functions (inner_join() and left_join() can
be used to combine data from multiple data frames.

7.4.1 Adding new variables to a data frame

The mutate() function can be used to add or modify vari-
ables in a data frame. Note

mutate() access to the other
variables in the data frame,
including any created earlier in
the same mutate() command.

Here we show how to modify the Births78 data frame
so that it contains a new variable weekend that distin-
guishes between weekdays and weekends.

data(Births78)

weekdays <- c("Sun", "Mon", "Tue", "Wed", "Thr", "Fri", "Sat")

Births <-

Births78 %>%

mutate(weekend = wday %in% c("Sat", "Sun"))

head(Births, 3)

date births dayofyear wday weekend

1 1978-01-01 7701 1 Sun TRUE

2 1978-01-02 7527 2 Mon FALSE

3 1978-01-03 8825 3 Tues FALSE

xyplot(births ~ date, Births, groups=weekend, auto.key=list(space='right'))
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Number of US births in 1978

colored by day of week.The CPS85 data frame contains data from a Current
Population Survey (current in 1985, that is). Two of the
variables in this data frame are age and educ. We can esti-
mate the number of years a worker has been in the work-
force if we assume they have been in the workforce since
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completing their education and that their age at grad-
uation is 6 more than the number of years of education
obtained.

CPS85 <- mutate(CPS85, workforce.years = age - 6 - educ)

favstats( ~ workforce.years, data=CPS85)

min Q1 median Q3 max mean sd n missing

-4 8 15 26 55 17.8 12.4 534 0

In fact this is what was done for all but one of the
cases to create the exper variable that is already in the
CPS85 data.

tally( ~ (exper - workforce.years), data=CPS85)

0 4

533 1

With categorical variables, sometimes we want to
modify the coding scheme.

HELP2 <- mutate(HELPrct,

newsex = factor(female, labels=c('M','F')))

It’s a good idea to do some sort of sanity check to make
sure that the recoding worked the way you intended

tally( ~ newsex + female, data=HELP2)

female

newsex 0 1

M 346 0

F 0 107

The derivedFactor() function can simplify creating
factors based on some logical tests.

HELP3 <- mutate(HELPrct,

risklevel = derivedFactor(

low = sexrisk < 5,

medium = sexrisk < 10,

high = sexrisk >=10,
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.method = "first" # use first rule that applies

)

)

head(HELP3, 4)

age anysubstatus anysub cesd d1 daysanysub dayslink drugrisk e2b female sex g1b

1 37 1 yes 49 3 177 225 0 NA 0 male yes

2 37 1 yes 30 22 2 NA 0 NA 0 male yes

3 26 1 yes 39 0 3 365 20 NA 0 male no

4 39 1 yes 15 2 189 343 0 1 1 female no

homeless i1 i2 id indtot linkstatus link mcs pcs pss_fr racegrp satreat sexrisk

1 housed 13 26 1 39 1 yes 25.11 58.4 0 black no 4

2 homeless 56 62 2 43 NA <NA> 26.67 36.0 1 white no 7

3 housed 0 0 3 41 0 no 6.76 74.8 13 black no 2

4 housed 5 5 4 28 0 no 43.97 61.9 11 white yes 4

substance treat risklevel

1 cocaine yes low

2 alcohol yes medium

3 heroin no low

4 heroin no low

7.4.2 Dropping variables

Since we already have educ, there is no reason to keep
our new variable workforce.years. Let’s drop it. Notice
the clever use of the minus sign.

CPS1 <- select(CPS85, -workforce.years)

head(CPS1, 1)

wage educ race sex hispanic south married exper union age

1 9 10 W M NH NS Married 27 Not 43

sector

1 const

Digging Deeper

Master programers in R such
as Hadley Wickham, the author
of the dplyr package, take
advantage of special features
of the language that allow such
notation as minus to mean
“exclude."

Any number of variables can be dropped or kept in
this manner by supplying a vector of variables names.

CPS1 <- select(CPS85, c(workforce.years,exper))

Columns can be specified by number as well as name (but
this can be dangerous if you are wrong about where the
columns are):



134 pruim, horton & kaplan

CPSsmall <- select(CPS85, select=1:4)

head(CPSsmall,2)

select1 select2 select3 select4

1 9.0 10 W M

2 5.5 12 W M

The functions matches(), contains(), starts_with(),
ends_with(), and number_range() are special functions
that only work in the context of select() but can be use-
ful for describing sets of variables to keep or discard.

head(select(HELPrct, contains("risk")), 2)

drugrisk sexrisk

1 0 4

2 0 7

The nested functions in the previous command make
the code a bit hard to read, and things would be worse if
we were composing several more functions. The magrittr
package (which loads when dplyr is loaded, hence when
mosaic is loaded) provides an alternative syntax:

HELPrct %>% select(contains("risk")) %>% head(2)

drugrisk sexrisk

1 0 4

2 0 7

The %>% operator uses the output from the left-hand side
as the first input to the function on the right-hand side.
This makes it easy to chain several data manipulation
commands together in the order in which they are ap-
plied to the data without having to carefully nest paren-
theses and explicitly pass along outputs of one function
as an argument to the next.

Here are a few more examples:

HELPrct %>% select(ends_with("e")) %>% head(2)

age female substance

1 37 0 cocaine

2 37 0 alcohol

HELPrct %>% select(starts_with("h")) %>% head(2)
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homeless

1 housed

2 homeless

HELPrct %>% select(matches("i[12]")) %>% head(2) # regex matching

i1 i2

1 13 26

2 56 62

7.4.3 Renaming variables

Both the column (variable) names and the row names of a
data frames can be changed by simple assignment using
names() or row.names().

ddd # small data frame we defined earlier

number letter

1 1 a

2 2 b

3 3 c

4 4 d

5 5 e

# changing the row.names affects how a data.frame prints

row.names(ddd) <- c("Abe","Betty","Claire","Don","Ethel")

ddd

number letter

Abe 1 a

Betty 2 b

Claire 3 c

Don 4 d

Ethel 5 e

It is also possible to reset just individual names with the
following syntax.

# misspelled a name, let's fix it

row.names(ddd)[2] <- "Bette"

row.names(ddd)

[1] "Abe" "Bette" "Claire" "Don" "Ethel"
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The faithful data set (in the datasets package, which
is always available) has very unfortunate names.

names(faithful)

[1] "eruptions" "waiting"

The measurements are the duration of an eruption and
the time until the subsequent eruption, so let’s give it
some better names. Teaching Tip

An alternative solution is to
use the geyser data set in the
MASS package. The gyser data
frame has better names and
more data. But here we want
to illustrate how to repair the
damage in faithful.

names(faithful) <- c('duration', 'time_til_next')

head(faithful, 3)

duration time_til_next

1 3.60 79

2 1.80 54

3 3.33 74

xyplot(time_til_next ~ duration, faithful)
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If the variable containing a
data frame is modified or used
to store a different object, the
original data from the package
can be recovered using data().We can also rename a single variable using names().

For example, perhaps we want to rename educ (the sec-
ond column) to education.

names(CPS85)[2] <- 'education'

CPS85[1,1:4]

wage education race sex

1 9 10 W M
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If we don’t know the column number (or generally to
make our code clearer), a few more keystrokes produces

names(CPS85)[names(CPS85) == 'education'] <- 'educ'

CPS85[1,1:4]

wage educ race sex

1 9 10 W M

See Section 7.4.2 for informa-
tion that will make it clearer
what is going on here.

The select() function can also be used to rename
variables.

data(faithful) # restore the original version

faithful2 <- faithful %>%

select(duration=eruptions, time_til_next = waiting)

head(faithful2, 2)

duration time_til_next

1 3.6 79

2 1.8 54

7.4.4 Creating subsets

We can use filter() to select only certain rows from a
data frame.

# any logical can be used to create subsets

faithful2 %>% filter(duration > 3) -> faithfulLong

xyplot(time_til_next ~ duration, faithfulLong)
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If all we want to do is produce a graph and don’t need
to save the subset, the plot above could also be made with
one of the following

xyplot(time_til_next ~ duration,

data = faithful2 %>% filter(duration > 3))

xyplot(time_til_next ~ duration, data = faithful2,

subset=duration > 3)

7.4.5 Summarising a data frame

The summarise() (or summarize()) function summarizes a
data frame as a single row.

HELPrct %>% summarise(x.bar = mean(age), s=sd(age))

x.bar s

1 35.7 7.71

This is especially useful in combination with group_-
by(), which divides the data frame into subsets. The fol-
lowing command will compute the mean and standard
deviation for each subgroup defined by a different combi-
nation of sex and substance.

HELPrct %>% group_by(sex, substance) %>%

summarise(x.bar = mean(age), s=sd(age))

Source: local data frame [6 x 4]

Groups: sex [?]

sex substance x.bar s

(fctr) (fctr) (dbl) (dbl)

1 female alcohol 39.2 7.98

2 female cocaine 34.9 6.20

3 female heroin 34.7 8.04

4 male alcohol 38.0 7.58

5 male cocaine 34.4 6.89

6 male heroin 33.1 7.97

The formula-based numerical summary functions sup-
plied by the mosaic package are probably easier for this
particular task, but using dplyr is more general.
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favstats(age ~ sex + substance, data=HELPrct, .format="table")

sex.substance min Q1 median Q3 max mean sd n missing

1 female.alcohol 23 33 37.0 45 58 39.2 7.98 36 0

2 male.alcohol 20 32 38.0 42 58 38.0 7.58 141 0

3 female.cocaine 24 31 34.0 38 49 34.9 6.20 41 0

4 male.cocaine 23 30 33.0 37 60 34.4 6.89 111 0

5 female.heroin 21 29 34.0 39 55 34.7 8.04 30 0

6 male.heroin 19 27 32.5 39 53 33.1 7.97 94 0

mean(age ~ sex + substance, data=HELPrct, .format="table")

group mean

1 female.alcohol 39.2

2 male.alcohol 38.0

3 female.cocaine 34.9

4 male.cocaine 34.4

5 female.heroin 34.7

6 male.heroin 33.1

sd(age ~ sex + substance, data=HELPrct, .format="table")

group sd

1 female.alcohol 7.98

2 male.alcohol 7.58

3 female.cocaine 6.20

4 male.cocaine 6.89

5 female.heroin 8.04

6 male.heroin 7.97
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7.4.6 Arranging a data frame

Sometimes it is convenient to reorder a data frame. We
can do this with the arrange() function by specifying the
variable(s) on which to do the sorting.

HELPrct %>%

group_by(sex, substance) %>%

summarise(x.bar = mean(age), s=sd(age)) %>%

arrange(x.bar)

Source: local data frame [6 x 4]

Groups: sex [2]

sex substance x.bar s

(fctr) (fctr) (dbl) (dbl)

1 female heroin 34.7 8.04

2 female cocaine 34.9 6.20

3 female alcohol 39.2 7.98

4 male heroin 33.1 7.97

5 male cocaine 34.4 6.89

6 male alcohol 38.0 7.58

7.4.7 Merging datasets

The fusion1 data frame in the fastR package contains
genotype information for a SNP (single nucleotide poly-
morphism) in the gene TCF7L2. The pheno data frame
contains phenotypes (including type 2 diabetes case/control
status) for an intersecting set of individuals. We can
merge these together to explore the association between
genotypes and phenotypes using one of the join functions
in dplyr or using the merge() function.
require(fastR)

fusion1 %>% head(3)

id marker markerID allele1 allele2 genotype Adose Cdose Gdose Tdose

1 9735 RS12255372 1 3 3 GG 0 0 2 0

2 10158 RS12255372 1 3 3 GG 0 0 2 0

3 9380 RS12255372 1 3 4 GT 0 0 1 1

pheno %>% head(3)

id t2d bmi sex age smoker chol waist weight height whr sbp dbp

1 1002 case 32.9 F 70.8 former 4.57 112.0 85.6 161 0.987 135 77

2 1009 case 27.4 F 53.9 never 7.32 93.5 77.4 168 0.940 158 88

3 1012 control 30.5 M 53.9 former 5.02 104.0 94.6 176 0.933 143 89
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# merge fusion1 and pheno keeping only id's that are in both

fusion1m <- merge(fusion1, pheno, by.x='id', by.y='id',

all.x=FALSE, all.y=FALSE)

fusion1m %>% head(3)

id marker markerID allele1 allele2 genotype Adose Cdose Gdose Tdose t2d bmi

1 1002 RS12255372 1 3 3 GG 0 0 2 0 case 32.9

2 1009 RS12255372 1 3 3 GG 0 0 2 0 case 27.4

3 1012 RS12255372 1 3 3 GG 0 0 2 0 control 30.5

sex age smoker chol waist weight height whr sbp dbp

1 F 70.8 former 4.57 112.0 85.6 161 0.987 135 77

2 F 53.9 never 7.32 93.5 77.4 168 0.940 158 88

3 M 53.9 former 5.02 104.0 94.6 176 0.933 143 89

pheno %>% left_join(fusion1, by="id") %>% dim()

[1] 2333 22

pheno %>% inner_join(fusion1, by="id") %>% dim()

[1] 2331 22

# which ids are only in \dataframe{pheno}?

setdiff(pheno$id, fusion1$id)

[1] 4011 9131

pheno %>% anti_join(fusion1, by="id")

id t2d bmi sex age smoker chol waist weight height

1 4011 case 34.0 F 64 never 5.36 108 85.0 158

2 9131 control 26.7 M 73 <NA> 5.76 98 77.4 170

whr sbp dbp

1 0.861 160 82

2 0.940 119 72

The difference between an inner join and a left join is
that the inner join only includes rows from the first data
frame that have a match in the second but a left join in-
cludes all rows of the first data frame, even if they do not
have a match in the second. In the example above, there
are two subjects in pheno that do not appear in fusion1.
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merge() handles these distinctions with the all.x
and all.y arguments. In this case, since the values are
the same for each data frame, we could collapse by.x
and by.y to by and collapse all.x and all.y to all. The
first of these specifies which column(s) to use to identify
matching cases. The second indicates whether cases in
one data frame that do not appear in the other should
be kept (TRUE) or dropped (filling in NA as needed) or
dropped from the merged data frame.

Now we are ready to begin our analysis.

tally( ~ t2d + genotype + marker, data=fusion1m)

, , marker = RS12255372

genotype

t2d GG GT TT

case 737 375 48

control 835 309 27

7.5 Getting data from mySQL data bases

The RMySQL package allows direct access to data in MySQL
data bases and the dplyr package facilitates processing
this data in the same way as for data in a data frame. This
makes it easy to work with very large data sets stored in
public databases. The example below queries the UCSC
genome browser to find all the known genes on chromo-

UCSC — Univ. of California,
Santa Cruz

some 1.
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# connect to a UCSC database

library(RMySQL)

UCSCdata <- src_mysql(

host="genome-mysql.cse.ucsc.edu",

user="genome",

dbname="mm9")

# grab one of the many tables in the database

KnownGene <- tbl(UCSCdata, "knownGene")

# Get the gene name, chromosome, start and end sites for genes on Chromosome 1

Chrom1 <-

KnownGene %>%

select(name, chrom, txStart, txEnd) %>%

filter(chrom == "chr1")

The resulting Chrom1 is not a data frame, but behaves
much like one.

class(Chrom1)

[1] "tbl_mysql" "tbl_sql" "tbl"

Caution!
The arithmetic operations in
this mutate() command are
being executed in SQL, not in
R, and the palette of allowable
functions is much smaller. It
is not possible, for example, to
compute the logarithm of the
length here using log(). For
that we must first collect the
data into a real data frame.

Chrom1 %>%

mutate(length=(txEnd - txStart)/1000) -> Chrom1l

Chrom1l

Source: mysql 5.6.26-log [genome@genome-mysql.cse.ucsc.edu:/mm9]

From: knownGene [3,056 x 5]

Filter: chrom == "chr1"

name chrom txStart txEnd length

(chr) (chr) (dbl) (dbl) (dbl)

1 uc007aet.1 chr1 3195984 3205713 9.73

2 uc007aeu.1 chr1 3204562 3661579 457.02

3 uc007aev.1 chr1 3638391 3648985 10.59

4 uc007aew.1 chr1 4280926 4399322 118.40

5 uc007aex.2 chr1 4333587 4350395 16.81

6 uc007aey.1 chr1 4481008 4483816 2.81

7 uc007aez.1 chr1 4481008 4486494 5.49

8 uc007afa.1 chr1 4481008 4486494 5.49

9 uc007afb.1 chr1 4481008 4486494 5.49

10 uc007afc.1 chr1 4481008 4486494 5.49

.. ... ... ... ... ...
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For efficiency, the full data are not pulled from the
database until needed (or until we request this using
collect()). This allows us, for example, to inspect the
first few rows of a potentially large pull from the database
without actually having done all of the work required to
pull that data.

But certain things do not work unless we collect the
results from the data based into an actual data frame. To
plot the data using lattice or ggplot2, for example, we
must first collect() it into a data frame.

Chrom1df <- collect(Chrom1l) # collect into a data frame

histogram( ~ length, data=Chrom1df, xlab="gene length (kb)")
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7.6 Reshaping data with tidyr

Sometimes data come in a shape that doesn’t suit our
purposes. The tidyr package includes several functions
for tidying data, including spread() and gather(), which
can be used to convert between “long" and “wide" for-
mats . We may want to do this becuase of a change in
perspective about what a unit of observation is, for exam-
ple. For example, in the traffic data frame, each row is a
year, and data for multiple states are provided.

traffic

year cn.deaths ny cn ma ri

1 1951 265 13.9 13.0 10.2 8.0

2 1952 230 13.8 10.8 10.0 8.5
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3 1953 275 14.4 12.8 11.0 8.5

4 1954 240 13.0 10.8 10.5 7.5

5 1955 325 13.5 14.0 11.8 10.0

6 1956 280 13.4 12.1 11.0 8.2

7 1957 273 13.3 11.9 10.2 9.4

8 1958 248 13.0 10.1 11.8 8.6

9 1959 245 12.9 10.0 11.0 9.0

We can reformat this so that each row contains a mea-
surement for a single state in one year by gathering the
states columns.

require(tidyr)

Loading required package: tidyr

LongTraffic <-

traffic %>%

select(-cn.deaths) %>%

gather(state, death.rate, ny:ri)

head(LongTraffic)

year state death.rate

1 1951 ny 13.9

2 1952 ny 13.8

3 1953 ny 14.4

4 1954 ny 13.0

5 1955 ny 13.5

6 1956 ny 13.4

This long format allows us to create a plot like this.

xyplot(death.rate ~ year, data = LongTraffic, groups = toupper(state),

type = "l",

auto.key = list(space = "right", lines = TRUE, points = FALSE))
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We can also reformat the other way, this time having
all data for a given state form a row in the data frame.
StateTraffic <-

LongTraffic %>%

spread(state, death.rate)

StateTraffic %>% head(3)

year ny cn ma ri

1 1951 13.9 13.0 10.2 8.0

2 1952 13.8 10.8 10.0 8.5

3 1953 14.4 12.8 11.0 8.5

We can create a plot using data in this format as well, but it involves a type of formula
we have not seen before:

xyplot(ri + ny + cn + ma ~ year, data=StateTraffic, type = "l",

auto.key = list(space = "right", lines = TRUE, points = FALSE))
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7.7 Functions in R

Functions in R have several components:

• a name (like histogram)1 1 Actually, it is possible to de-
fine functions without naming
them; and for short functions
that are only needed once, this
can actually be useful.

• an ordered list of named arguments that serve as in-
puts to the function

These are matched first by name and then by order
to the values supplied by the call to the function. This
is why we don’t always include the argument name in
our function calls. On the other hand, the availability
of names means that we don’t have to remember the
order in which arguments are listed.

Arguments often have default values which are
used if no value is supplied in the function call.

• a return value
This is the output of the function. It can be as-

signed to a variable using the assignment operator
(=, <-, or ->).

• side effects
A function may do other things (like make a graph

or set some preferences) that are not necessarily part of
the return value.

When you read the help pages for an R function, you will
see that they are organized in sections related to these
components. The list of arguments appears in the Usage
section along with any default values. Details about how
the arguments are used appear in the Arguments section.
The return value is listed in the Value section. Any side
effects are typically mentioned in the Details section. Even if you do not end up writ-

ing many functions yourself,
writing a few functions will
give you a much better feel for
how information flows through
R code.

Now let’s try writing our own function. Suppose you
frequently wanted to compute the mean, median, and
standard deviation of a distribution. You could make a
function to do all three to save some typing.

Let’s name our function mystats(). The mystats()
will have one argument, which we are assuming will be a
vector of numeric values. Here is how we could define it:

mystats <- function(x) {

mean(x)

median(x)

sd(x)
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}

mystats((1:20)^2)

[1] 128

There are ways to check the
class of an argument to see
if it is a data frame, a vector,
numeric, etc. A really robust
function should check to make
sure that the values supplied to
the arguments are of appropri-
ate types.

The first line says that we are defining a function
called mystats() with one argument, named x. The lines
surrounded by curly braces give the code to be executed
when the function is called. So our function computes the
mean, then the median, then the standard deviation of its
argument.

But as you see, this doesn’t do exactly what we wanted.
So what’s going on? The value returned by the last line of
a function is (by default) returned by the function to its
calling environment, where it is (by default) printed to
the screen so you can see it. In our case, we computed
the mean, median, and standard deviation, but only the
standard deviation is being returned by the function and
hence displayed. So this function is just an inefficient ver-
sion of sd(). That isn’t really what we wanted.

We can use print() to print out things along the way
if we like.

mystats <- function(x) {

print(mean(x))

print(median(x))

print(sd(x))

}

mystats((1:20)^2)

[1] 144

[1] 110

[1] 128

Alternatively, we could use a combination of cat()
and paste(), which would give us more control over how
the output is displayed.
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altmystats <- function(x) {

cat(paste(" mean:", format(mean(x),4),"\n"))

cat(paste(" edian:", format(median(x),4),"\n"))

cat(paste(" sd:", format(sd(x),4),"\n"))

}

altmystats((1:20)^2)

mean: 144

edian: 110

sd: 128

Either of these methods will allow us to see all three val-
ues, but if we try to store them . . .

temp <- mystats((1:20)^2)

[1] 144

[1] 110

[1] 128

temp

[1] 128

A function in R can only have one return value, and by
default it is the value of the last line in the function. In
the preceding example we only get the standard devia-
tion since that is the value we calculated last.

We would really like the function to return all three
summary statistics. Our solution will be to store all three
in a vector and return the vector.2 2 If the values had not all been

of the same mode, we could
have used a list instead.

mystats <- function(x) {

c(mean(x), median(x), sd(x))

}

mystats((1:20)^2)

[1] 144 110 128

Now the only problem is that we have to remember
which number is which. We can fix this by giving names
to the slots in our vector. While we’re at it, let’s add a
few more favorites to the list. We’ll also add an explicit
return().
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mystats <- function(x) {

result <- c(min(x), max(x), mean(x), median(x), sd(x))

names(result) <- c("min","max","mean","median","sd")

return(result)

}

mystats((1:20)^2)

min max mean median sd

1 400 144 110 128

aggregate(Sepal.Length ~ Species, data=iris, FUN=mystats)

Species Sepal.Length.min Sepal.Length.max

1 setosa 4.300 5.800

2 versicolor 4.900 7.000

3 virginica 4.900 7.900

Sepal.Length.mean Sepal.Length.median Sepal.Length.sd

1 5.006 5.000 0.352

2 5.936 5.900 0.516

3 6.588 6.500 0.636

Notice how nicely this works with aggregate(). The
favstats() function in the mosaic package includes the
quartiles, mean, standard, deviation, sample size and
number of missing observations.
favstats(Sepal.Length ~ Species, data=iris)

Species min Q1 median Q3 max mean sd n missing

1 setosa 4.3 4.80 5.0 5.2 5.8 5.01 0.352 50 0

2 versicolor 4.9 5.60 5.9 6.3 7.0 5.94 0.516 50 0

3 virginica 4.9 6.23 6.5 6.9 7.9 6.59 0.636 50 0

We can get a version of our new function that works with
the formula template like this.

# first create a version that works on vectors

mystats_ <- function(x, na.rm = TRUE) {

result <- c(min(x, na.rm = na.rm), max(x, na.rm = na.rm), mean(x, na.rm = na.rm),

median(x, na.rm = na.rm), sd(x, na.rm = na.rm))

names(result) <- c("min","max","mean","median","sd")

return(result)

}

# no create a version that knows the formula template

mystats <- aggregatingFunction1(mystats_, output.multiple = TRUE)
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mystats(Sepal.Length ~ Species, data = iris)

Species min max mean median sd

1 setosa 4.3 5.8 5.01 5.0 0.352

2 versicolor 4.9 7.0 5.94 5.9 0.516

3 virginica 4.9 7.9 6.59 6.5 0.636

7.8 Sharing With and Among Your Students

Instructors often have their own data sets to illustrate
points of statistical interest or to make a particular con-
nection with a class. Sometimes you may want your class
as a whole to construct a data set, perhaps by filling in a
survey or by contributing their own small bit of data to a
class collection. Students may be working on projects in
small groups; it’s nice to have tools to support such work
so that all members of the group have access to the data
and can contribute to a written report.

There are now many technologies that support such
sharing. For the sake of simplicity, we will emphasize
three that we have found particularly useful both in
teaching statistics and in our professional collaborative
work. These are:

• A web site with minimal overhead, such as provided
by Dropbox.

• The services of Google Docs.

• A web-based RStudio server for R.

The first two are already widely used in university envi-
ronments and are readily accessible simply by setting up
accounts. Setting up an RStudio web server requires some
IT support, but is well within the range of skills found in
IT offices and even among some individual faculty.

7.8.1 Using RStudio server to share files

Teaching Tip

When accounts are set up on
the RStudio server for a new
class at Calvin, each user is
given a symbolic link to a di-
rectory where the instructor
can write files and students can
only read files. This provides
an easy way to make data, R
code, or history files available
to students from inside RStudio.

The RStudio server runs on a Linux machine. Users of
RStudio have accounts on the underlying Linux file system
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and it is possible to set up shared directories with permis-
sions that allow multiple users to read and/or write files
stored there. This has to be done outside of RStudio, but if
you are familiar with the Linux operating system or have
a system administrator who is willing to help you out,
this is not difficult to do.

7.8.2 Your own web site

You may already have a web site. We have in mind a
place where you can place files and have them accessed
directly from the Internet. For sharing data, it’s best
if this site is public, that is, it does not require a login
for others to access the files you put there. In this case,
read.file() can read the data into R directly from the
URL:

Fires <- read.csv("http://www.calvin.edu/~rpruim/data/Fires.csv")

head(Fires)

Year Fires Acres

1 2011 74126 8711367

2 2010 71971 3422724

3 2009 78792 5921786

4 2008 78979 5292468

5 2007 85705 9328045

6 2006 96385 9873745

xyplot(Acres/Fires ~ Year, data=Fires, ylab="acres per fire",

type=c("p","smooth"))
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Unfortunately, most “course support” systems such as
Moodle orBlackboard do not provide such easy access to
data. The Dropbox service for storing files in the “cloud”
provides a very convenient way to distribute files over the
web. (Go to dropbox.com for information and to sign up
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for a free account.) Dropbox is routinely used to provide
automated backup and coordinated file access on multi-
ple computers. But the Dropbox service also provides a
Public directory. Any files that you place in that direc-
tory can be accessed directly by a URL.

Our discussion of Dropbox is
primarily for those who do not
already know how to do this
other ways.

To illustrate, suppose you wish to share some data
set with your students. You’ve constructed this data set
in a spreadsheet and stored it as a csv file, let’s call it
example-A.csv. Move this file into the Public directory
under Dropbox — on most computers Dropbox arranges
things so that its directories appear exactly like ordinary
directories and you’ll use the ordinary, familiar file man-
agement techniques such as drag and drop.

Dragging a csv file to a Drop-
box Public directory

Dropbox also makes it straightforward to construct
the web-location identifying URL for any file by using
mouse-based menu commands to place the URL into
the clipboard, whence it can be copied to your course-
support software system or any other place for distribu-
tion to students. For a csv file, reading the contents of the
file into R can be done with the read.csv() function, by
giving it the quoted URL:

a <- read.file("http://dl.dropbox.com/u/5098197/USCOTS2011/ExampleA.csv")

Getting the URL of a file in a
Dropbox Public directory

This technique makes it easy to distribute data with
little advance preparation. It’s fast enough to do in the
middle of a class: the csv file is available to your students
(after a brief lag while Dropbox synchronizes). It can even
be edited by you (but not by your students).

The same technique can be applied to all sorts of files
like R workspaces or R scripts (files containing code). Of
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course, your students need to use the appropriate R com-
mand: load() for a workspace or source() for a script.

The example below will source a file that will print a
welcoming message for you.

source('http://mosaic-web.org/go/R/hello.R')

Hello there. You just sourced a file over the web!

But you can put any R code you like in the files you
have your students source. You can install and load pack-
ages, retrieve or modify data sets, define new functions,
or anything else R allows.

Many instructors will find it useful to create a file
with your course-specific R scripts, adding on to it and
modifying it as the course progresses. This allows you to
distribute all sorts of special-purpose functions, letting
you distribute new R material to your students. That bril-
liant new idea you had at 2 AM can be programmed up
and put in place for your students to use the next morn-
ing in class. Then as you identify bugs and refine the pro-
gram, you can make the updated software immediately
available to your students. Caution!

Security through Obscurity of this
sort will not generally satisfy
institutional data protection
regulations nor professional
ethical requirements, so nothing
truly sensitive or confidential
should be “protected" in this
manner.

If privacy is a concern, for instance if you want the
data available only to your students, you can effectively
accomplish this by giving files names known only to your
students, e.g., Example-A78r423.csv.

7.8.3 GoogleDocs

The Dropbox technique (or any other system of posting
files to the Internet) is excellent for broadcasting: tak-
ing files you create and distributing them in a read-only
fashion to your students. But when you want two-way or
multi-way sharing of files, other techniques are called for,
such as provided by the GoogleDocs service.

GoogleDocs allows students and instructors to create
various forms of documents, including reports, presen-
tations, and spreadsheets. (In addition to creating doc-
uments de novo, Google will also convert existing docu-
ments in a variety of formats.)
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Once on the GoogleDocs system, the documents can
be edited simultaneously by multiple users in different
locations. They can be shared with individuals or groups
and published for unrestricted viewing and even editing.

For teaching, this has a variety of uses:

• Students working on group projects can all simulta-
neously have access to the report as it is being written
and to data that is being assembled by the group.

• The entire class can be given access to a data set, both
for reading and for writing.

• The Google Forms system can be used to construct
surveys, the responses to which can populate a spread-
sheet that can be read back into RStudio by the survey
creators.

• Students can “hand in” reports and data sets by copy-
ing a link into a course support system such as Moodle
or Blackboard, or emailing the link.

• The instructor can insert comments and/or corrections
directly into the document.

An effective technique for organizing student work
and ensuring that the instructor (and other graders) have
access to it, is to create a separate Google directory for
each student in your class (Dropbox can also be used
in this manner). Set the permission on this directory to
share it with the student. Anything she or he drops into
the directory is automatically available to the instructor.
The student can also share with specific other students
(e.g., members of a project group).

Data can be read directly from google sheets using
the googlesheets package. This works much like read_-
excel() from the readxl package.

7.9 Additional Notes on R Syntax

7.9.1 Text and Quotation Marks

For the most part, text in R must be enclosed in either
single or double quotations. It usually doesn’t matter
which you use, unless you want one or the other type of



156 pruim, horton & kaplan

quotation mark inside your text. Then you should use the
other type of quotation mark to mark the beginning and
the end.

# apostrophe inside requires double quotes around text

text1 <- "Mary didn't come"

# this time we flip things around

text2 <- 'Do you use "scare quotes"?'

7.10 Common Error Messages and What Causes
Them

7.10.1 Error: Object not found

R reports that an object is not found when it cannot locate
an object with the name you have used. One common
reason for this is a typing error. This is easily corrected by
retyping the name with the correct spelling.

histogram( ~ aeg, data=HELPrct)

Error in eval(expr, envir, enclos): object ’aeg’ not

found

Another reason for an object-not-found error is using
unquoted text where quotation marks were required.

text3 <- hello

Error in eval(expr, envir, enclos): object ’hello’ not

found

In this case, R is looking for some object named hello,
but we meant to store a string:

text3 <- "hello"
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7.10.2 Error: unexpected . . .

If while R is parsing a statement it encounters something
that does not make sense it reports that something is “un-
expected”. Often this is the result of a typing error – like
omitting a comma.

c(1,2 3) # missing a comma

Error in c(): unexpected numeric constant in "c(1,2 3"

7.10.3 Error: object of type ‘closure’ is not subsettable

The following produces an error if time has not been de-
fined.

time[3]

Error in time[3]: object of type ’closure’ is not

subsettable

There is a function called time() in R, so if you haven’t
defined a vector by that name, R will try to subset the
time() function, which doesn’t make sense.

Typically when you see this error, you have a function
in a place you don’t mean to have a function. The mes-
sage can be cryptic to new users because of the reference
to a closure.

7.10.4 Other Errors

If you encounter other errors and cannot decipher them,
often pasting the error message into a google search
will find a discussion of that error in a context where it
stumped someone else.

7.11 Review of R Commands

Here is a brief summary of the commands introduced in
this chapter.
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source("file.R") # execute commands in a file

x <- 1:10 # create vector with numbers 1 through 10

M <- matrix(1:12, nrow=3) # create a 3 x 4 matrix

data.frame(number = 1:26, letter=letters[1:26]) # create a data frame

mode(x) # returns mode of object x

length(x) # returns length of vector or list

dim(HELPrct) # dimension of a matrix, array, or data frame

nrow(HELPrct) # number of rows

ncol(HELPrct) # number of columns

names(HELPrct) # variable names in data frame

row.names(HELPrct) # row names in a data frame

attributes(x) # returns attributes of x

toupper(x) # capitalize

as.character(x) # convert to a character vector

as.logical(x) # convert to a logical (TRUE or FALSE)

as.numeric(x) # convert to numbers

as.integer(x) # convert to integers

factor(x) # convert to a factor [categorical data]

class(x) # returns class of x

smallPrimes <- c(2,3,5,7,11) # create a (numeric) vector

rep(1, 10) # ten 1's

seq(2, 10, by=2) # evens less than or equal to 10

rank(x) # ranks of items in x

sort(x) # returns elements of x in sorted order

order(x) # x[ order(x) ] is x in sorted order

rev(x) # returns elements of x in reverse order

diff(x) # returns differences between consecutive elements

paste("Group", 1:3, sep="") # same as c("Group1", "Group2", "Group3")
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write.table(HELPrct, file="myHELP.txt") # write data to a file

write.csv(HELPrct, file="myHELP.csv") # write data to a csv file

save(HELPrct, file="myHELP.Rda") # save object(s) in R's native format

modData <- HELPrct %>% mutate(old = age > 50) # add a new variable to data frame

women <- HELPrct %>% filter(sex=='female') # select only specified cases

favs <- HELPrct %>% select(age, sex, substance) # keep only 3 columns

trellis.par.set(theme=col.mosaic()) # choose theme for lattcie graphics

show.settings() # inspect lattice theme

7.12 Exercises

7.1 Using faithful data frame, make a scatter plot of
eruption duration times vs. the time since the previous
eruption.

7.2 The fusion2 data set in the fastR package contains
genotypes for another SNP. Merge fusion1, fusion2, and
pheno into a single data frame.

Note that fusion1 and fusion2 have the same columns.
names(fusion1)

[1] "id" "marker" "markerID" "allele1" "allele2"

[6] "genotype" "Adose" "Cdose" "Gdose" "Tdose"

names(fusion2)

[1] "id" "marker" "markerID" "allele1" "allele2"

[6] "genotype" "Adose" "Cdose" "Gdose" "Tdose"

You may want to use the suffixes argument to merge()
or rename the variables after you are done merging to
make the resulting data frame easier to navigate.

Tidy up your data frame by dropping any columns
that are redundant or that you just don’t want to have in
your final data frame.
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Getting Interactive: manipulate and shiny

One very attractive feature of RStudio is the manipulate()
function (in the manipulate package, which is only avail-
able within RStudio). This function makes it easy to create
a set of controls (such as sliders, checkboxes, drop down
selections, etc.) that can be used to dynamically change
values within an expression. When a value is changed
using these controls, the expression is automatically re-
executed and any plots created as a result are redrawn.
This can be used to quickly prototype a number of activi-
ties and demos as part of a statistics lecture.

shiny is a new web development system for R be-
ing designed by the RStudio team. shiny uses a reactive
programming model to make it relatively easy for an R
programmer to create highly interactive, well designed
web applications using R without needing to know much
about web programming. Programming in shiny is more
involved than using manipulate, but it offers the designer
more flexibility. One of the goals in creating shiny was to
support corporate environments, where a small number
of statisticians and programmers can create web appli-
cations that can be used by others within the company
without requiring them to know any R. This same frame-
work offers many possibilities for educational purposes
as well. Some have even suggested implementing fairly
extensive GUI interfaces to commonly used R functional-
ity using shiny.
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8.1 Getting Started with manipulate

The manipulate() function and the various control func-
tions that are used with it are only available after loading
the manipulate package, which is only available in RStu-
dio.

require(manipulate)

8.1.1 Sliders

manipulate(

histogram( ~ eruptions, data=faithful, n=N),

N = slider(5,40)

)

This generates a plot along with a slider ranging from 5 We find it useful to capitalize
the inputs to the manipulated
expression that are hooked up
to manipulate controls. This
helps avoid naming collisions
and signals how the main ma-
nipulated expression is being
used.

bins to 40.

When the slider is changed, we see a clearer view of
the eruptions of Old Faithful.
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8.1.2 Check Boxes

manipulate(

histogram( ~ age, data=HELPrct, n=N, density=DENSITY),

N = slider(5,40),

DENSITY = checkbox()

)

8.1.3 Drop-down Menus

Drop-down menus can be added using the picker()
function.

manipulate(

histogram( ~ age, data=HELPrct, n=N,

fit=DISTRIBUTION, dlwd=4),

N = slider(5,40),

DISTRIBUTION =

picker('normal', 'gamma', 'exponential', 'lognormal',

label="distribution")

)
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8.1.4 Visualizing Normal Distributions

In this section we will gradually build up a small manipulate
example that shows the added flexibility that comes from
writing a function that returns a manipulate object. Such
functions can be distributed to students to allow them to
explore interactively in a more flexible way.

We begin by creating an illustration of tail probabili-
ties in a normal distribution.

manipulate(

xpnorm( X, 500, 100, verbose=FALSE, invisible=TRUE ),

X = slider(200,800) )

The version below can be used to investigate central prob-
abilities and tail probabilities.

manipulate(

xpnorm( c(-X,X), 500, 100, verbose=FALSE, invisible=TRUE ),

X = slider(200,800) )

These examples work with a fixed distribution. Here
is a fancier version in which a function returns a manipu-
late object. This allows us to easily create illustrations like
the ones above for any normal distribution.

mNorm <- function( mean=0, sd=1 ) {

lo <- mean - 5*sd

hi <- mean + 5*sd

manipulate(

xpnorm( c(A,B), mean, sd, verbose=FALSE, invisible=TRUE ),

A = slider(lo, hi, initial=mean-sd),

B = slider(lo, hi, initial=mean+sd)

)

}

mNorm( mean=100, sd=10 )
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8.2 mPlot()

The mosaic package provides the mPlot() function which
allows users to create a wide variety of plots using ei-
ther lattice or ggplot2. Furthermore, the code used to
generate these plots can be displayed upon request. This
facilitates learning these commands, allows users to make
further modifications that are not possible in the manipu-
late interface, and provides an easy copy-and-paste mech-
anism for dropping these plots into other documents.

The available plots come in two clusters, depending
on whether the underlying plot is essentially two-variable
or one-variable. Additional variables can be represented
using color, size, and sub-plots (facets).

# These are essentially 2-variable plots

mPlot( HELPrct, "scatter" ) # start with a scatter plot

mPlot( HELPrct, "boxplot" ) # start with boxplots

mPlot( HELPrct, "violin" ) # start with violin plots

# These are essentially 1-variables plots

mPlot( HELPrct, "histogram" ) # start with a histogram

mPlot( HELPrct, "density" ) # start with a density plot

mPlot( HELPrct, "frequency polygon" ) # start with a frequency polygon
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8.3 Shiny

shiny is a package created by the RStudio team to, in their
words,

[make] it incredibly easy to build interactive web appli-
cations with R. Automatic “reactive" binding between
inputs and outputs and extensive pre-built widgets make
it possible to build beautiful, responsive, and powerful
applications with minimal effort.

These web applications can, of course, run R code to do
computations and produce graphics that appear in the
web page.

The level of coding skill required to create this is be-
yond the scope of this book, but those with a little more
programming background can easily learn the necessary
toolkit to make beautiful interactive web pages. More in-
formation about shiny and some example applications
are available at http://www.rstudio.com/shiny/.

Exercises

8.1 The following code makes a scatterplot with separate
symbols for each sex.

xyplot(cesd ~ age, data=HELPrct, groups=sex)

Build a manipulate example that allows you to turn the
grouping on and off with a checkbox.

8.2 Build a manipulate example that uses a picker to se-
lect from a number of variables to make a plot for. Here’s
an example with a histogram:

http://www.rstudio.com/shiny/
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8.3 Design your own interactive demonstration idea and
implement it using RStudio manipulate tools.
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