
ar
X

iv
:c

ha
o-

dy
n/

99
01

02
0v

1 
 2

0 
Ja

n 
19

99

Christini and Kaplan 1

Adaptive estimation and control of unstable periodic dynamics in excitable
biological systems

David J. Christini†,1 and Daniel T. Kaplan‡,2

†Division of Cardiology, Department of Medicine, Cornell University Medical College, New
York, NY 10021

‡Department of Mathematics and Computer Science, Macalester College, St. Paul, MN 55105

October 1, 2018

Abstract

Dynamical control of excitable biological systems is oftencomplicated by the difficult
and unreliable task of pre-control identification of unstable periodic orbits (UPOs). Here we
show that, for both chaotic and nonchaotic systems, UPOs canbe located, and their dynamics
characterized,during control. Tracking of system nonstationarities emerges naturally from this
approach. Such a method is potentially valuable for the control of excitable biological systems,
for which pre-control UPO identification is often impractical and nonstationarities (natural or
stimulation-induced) are common.
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Chaos control techniques have been applied to a number of excitable biological systems [1,
2, 3, 4, 5] comprised of spontaneously firing cells. Such control typically attempts to replace an
unwanted irregular or higher-order firing pattern with a lower-order periodic rhythm. One partic-
ular control technique, PPF control [1], uses isolated electrical stimuli to cause the cells to fire at
a specified time, thus altering the variable of interest, theinter-excitation interval. In the idealized
situation presented in Refs. [1] and [2] the PPF stimuli achieve control by placing the state of the
biological system onto the stable manifold of a desired unstable periodic orbit (UPO).

The successful application of PPF control requires an estimate of the location of the uncon-
trolled system’s UPO and corresponding manifolds. UPOs andtheir eigenvalues [6] are typically
characterized from measurements of the system in free-running mode, without external stimula-
tion [1, 2]. PPF-type [7] stimuli are then used to alter the inter-excitation interval in an attempt to
place the system state point onto the estimated stable manifold and therefore stabilize the UPO.

Proper estimation of the UPO and its characteristics is of fundamental importance to PPF-type
control for several reasons. First, optimal control (whichwe consider to be stabilization of the
desired UPO with a minimal number of stimuli) is achieved when the system state is placed onto
the stable manifold. Without placement directly onto a stable manifold, control can be achieved
via alternative dynamical mechanisms [8, 9, 10, 11, 12] thatrequire more frequent stimulation.
Second, knowledge of unstable orbits can provide a skeletonupon which to build a model of the
overall system. Third, the UPO may change in time; by continuously tracking the properties of
the orbit, one can adaptively change the control parametersin order to maintain the controlled
stability of the orbit. Changes in the UPO may stem from autonomous drifts in the properties
of the biological system, or may be a response to the control stimuli (a tissue’s dynamical or
electrochemical properties may be modified by stimulation [13, 14]). With these reasons in mind,
this report is concerned with ways to use PPF-type control inorder to identify, control, and track
such UPOs and their manifolds.

The detection of a UPO using data collected in the uncontrolled, free-running system [1, 2]
can be problematic. As mentioned above, one problem with such an approach is that excitable
biological systems are commonly nonstationary. Thus, a pre-control UPO estimate may become
invalid before or during the control stage. Another problemis that in the free-running system,
the system’s state may spend little time in the vicinity of the orbit. As an extreme case, a system
with a stable attracting periodic orbit may well have other UPOs, but the free-running system
will visit only the stable orbit. Even with a lengthy free-running data collection stage, there is
no guarantee that there will be sufficient data from within the UPO neighborhood; a paucity of
such data from within the UPO neighborhood renders dubious the reliability of the estimated UPO
characteristics. Statistical tests have been proposed to validate UPO existence [15], but the most
compelling evidence comes when control of a putative orbit is successfully achieved. With this in
mind, an alternative to pre-control UPO identification is tolocate and characterize a UPO while
attempting control.

To this end, Kaplan [12] recently showed that control can be used to locate UPOs by tuning
the control parameters to be near a bifurcation in the controlled system’s dynamics. Such control
allows the experimentalist to circumvent the major hurdle of pre-control UPO identification: the
limited time that the state point spends in the UPO neighborhood. However, although the system’s
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state stays near the UPO during such control, estimation of UPO characteristics is complicated by
the fact that the natural UPO dynamics are masked by the control stimuli. So, the experimentalist
faces a choice of studying the free-running system with infrequent UPO data, or studying the
controlled system with plentiful data but with obscured or altered dynamics. As we show in this
report, the latter alternative can be rendered feasible by circumventing the masking in either of
two ways: 1) estimating the natural UPO dynamicsbetween intermittently applied stimuli or 2)
jiggling the control parameters.

We will examine systems whose natural, uncontrolled dynamics can be approximated by an
autoregressive systemxn+1 = f(xn, xn−1). Such systems can have many types of UPOs. For
control of excitable biological systems,xn is taken to be the time interval between thenth firing of
the system and the previous firing. As long as the state point(xn, xn−1) is in the neighborhood of a
UPO, the system dynamics can be approximated linearly asxn+1 = axn + bxn−1 + c, or, rewriting
the constantsa, b, andc in terms of the parameters of the UPO:

xn+1 = (λs + λu)xn − λsλuxn−1 + x⋆(1 + λsλu − λs − λu) (1)

whereλs andλu are the eigenvalues of the linearized system, andx⋆ is the location of the UPO
sampled once per cycle. The notation is intended to suggest that there is one stable and one
unstable eigenvalue, as required for a saddle-type fixed point. However, the equation is applicable
even when both eigenvalues are unstable.

The application of PPF-type control changes the dynamics near the UPO to a nonlinear form:

xn+1 = min

{
(λs + λu)xn − λsλuxn−1 + x⋆(1 + λsλu − λs − λu) natural dynamics
λ̂s(xn − x̂⋆) + x̂⋆ control stimulus

(2)

wherex̂⋆ andλ̂s are estimates of the UPO positionx⋆ and stable manifold slopeλs. Kaplan [12]
showed that for a flip-saddle, when̂x⋆ ≈ x⋆ and |λ̂s| < 1 the controlled system modeled by
Eq. 2 will be characterized by a control stimulus applied either every interval (when̂x⋆ < x⋆) or
every second interval with the intervening intervals beingterminated naturally (when̂x⋆ > x⋆).
As shown in Ref. [12],x⋆ can be located by systematically scanning over a range ofx̂⋆ for the
stimulus-pattern bifurcation.

In the system of Eq. 2, because the natural dynamics are obscured by the control stimuli, it is
not possible to estimateλs andλu. For the case wherêx⋆ < x⋆, (when control stimuli are applied
every interval), the controlled dynamics are simply

xn+1 = λ̂s(xn − x̂⋆) + x̂⋆. (3)

The naturalλs andλu do not enter into these dynamics and therefore cannot be estimated from
them. For the case wherêx⋆ > x⋆ (when control stimuli are applied every second interval), the
controlled dynamics for intervals that end naturally without a control stimulus, are

xn+1 = (λ̂s(λs + λu)− λsλu)xn−1 + (1 + λsλu − λ̂s(λs + λu))x̂⋆ (4)

(as can be found by substituting the bottom equation of Eq. 2 for xn in the top equation). Note that
from measurements ofxn+1 andxn−1, only the lumped constant parameterλsλu − λ̂s(λs + λu) in
Eq. 4 can be estimated, and notλs andλu individually.
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Christini and Collins [11] proposed a simplified modification of PPF control, which they termed
SMP control. They showed that effective control can be accomplished by turning off the control
stimuli and allowing the system to free-run according to thenatural dynamics until the state point
(xn, xn−1) wanders out of the UPO neighborhood. Only when the difference between(xn, xn−1)
and the UPO(x⋆, x⋆) reaches a threshold is control reactivated to return the state point to the
UPO neighborhood via the stable manifold. In Ref. [11], the primary motivation for such inter-
mittent perturbation was to minimize control interventions in order to limit stimulation-induced
modification of the dynamical or electrochemical properties of the excitable tissue [13, 14]. In the
present context, intermittent stimulation provides another important benefit: allowing observation
and characterization of the natural UPO dynamics between control perturbations.

When the control stimuli are turned off when using the SMP strategy, the system dynamics near
the fixed point are given by Eq. 1. The parametersλs, λu, andx⋆ can then be estimated by linear
regression ofxn+1 onxn andxn−1. We define a “natural triplet” to be a sequence(xn+1, xn, xn−1)
in which intervaln + 1 is terminated naturally, but intervalsn andn − 1 could be terminated
naturally or by control stimuli. Only natural triplets can be used in the regression.

In order to track UPO drift, estimates ofλs, λu, andx⋆ are made from the lastN natural triplets
(xn+1, xn, xn−1). In this letter, we takeN = 10. After each estimation, the control parametersλ̂s

andx̂⋆ in Eq. 2 are adjusted accordingly.
Care must be taken when performing the linear regression. Ifonly one eigenvector is required

to characterize the data fit to Eq. 1, then the parameter estimations will not accurately represent
the natural two-manifold UPO dynamics. This situation occurs when one of the manifolds has
little or no influence on the state dynamics for several consecutive natural triplets. For example,
when control is turned off when using the SMP strategy, the state point will tend to retreat from the
UPO along the unstable manifold. Thus, the natural dynamicswill be xn+1 = λu(xn − x⋆) + x⋆,
which does not reflectλs. If theN points used in the estimation consist mainly of such points,the
parameter estimations will not accurately represent the natural two-manifold UPO dynamics. Such
a situation can be detected by using singular value decomposition (SVD) [16] to carry out the linear
regression: if the ratio between the regression’s largest and smallest singular values is exceedingly
large, the estimate is dubious. If this is the case,x̂⋆ andλ̂s from the last valid estimation of Eq. 1
should be used for setting the control parameters in Eq. 2.

We illustrate the SMP characterization and tracking technique using the chaotic Hénon map,

xn+1 = 1.0− Ax2

n +Bxn−1, (5)

whereA = 1.4, B = 0.3, andxn represents thenth inter-excitation interval. With these parameter
values, the system is chaotic and has a flip-saddle UPO atx⋆ = 0.8839, with λu = −1.9237 and
λs = 0.1559. Figure 1 shows a trial demonstrating the adaptive estimation and control of this
UPO. Initially, the Hénon map was free-run for 100 points without control [Fig. 1(a)]. Atn = 100,
control was activated, setting the control parameterλ̂s = 0 and scanning forx⋆ by systematically
increasinĝx⋆. For x̂⋆ < x⋆ the resulting controlled dynamics show a fixed point atx̂⋆ with the
control stimulus being applied at every interval. Atx̂⋆ = x⋆, a period-doubling bifurcation occurs,
thus marking the location of the flip-saddle UPO. As shown in the inset of Fig. 1(b), the bifurcation
occurred atn = 174.
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Following detection of the bifurcation, control continuedwith x̂⋆ set to0.9073, the midpoint
of the last pre-bifurcation pacing interval and the first post-bifurcation pacing interval. AfterN
natural triplets had occurred [see inset in Fig. 1(b)], the first SVD estimation ofλs, λu, andx⋆ was
performed [17]. Aftern = 190, control followed the SMP protocol, with control stimuli used only
when|x⋆−xn| > δ. (δ was set to0.001 for all trials in this study.) SMP successfully stabilized the
UPO with control stimuli being provided approximately every 20th interval as seen in Fig. 1(c).
Figure 1(d) shows that the control-stage SVD estimatesλ̂s andλ̂u (re-estimated via SVD following
every natural interval using the most recentN natural triplets) were close to their true values.

After n = 500, to simulate a noisy system, a Gaussian white noise iterate (standard deviation
0.0001) was added to each non-controlled Hénon map iterate. In the noisy system, control required
more frequent SMP perturbations because the additive noisecaused the system state point to wan-
der more quickly away fromx⋆. Due to the additive noise,̂λs and λ̂u fluctuated, but remained
scattered around the true values [Fig. 1(d)].

This technique can also be used to locate and stabilize UPOs in nonchaotic systems. We per-
formed a trial controlling the Hénon map of Eq. 5 withA = 1.0 andB = 0.3. With these parameter
values, the system settles into a stable period-4 rhythm. However, there is an underlying unstable
flip-saddle UPO atx⋆ = 0.7095, with λu = −1.6058 andλs = 0.1868. This UPO cannot be
detected from free-running data, but the bifurcation search, SVD parameter estimation, and SMP
control were able to locate and stabilize the UPO. For this trial, the bifurcation search, control per-
turbations, and manifold estimations were all qualitatively similar to those shown for the chaotic
Hénon map in Fig. 1. As in Fig. 1, control remained effectivewhen a Gaussian white noise iter-
ate (standard deviation 0.0001) was added to each non-controlled Hénon map iterate. Given the
prevalence of pathologic nonchaotic rhythms in excitable biological systems [3, 4, 5], this example
demonstrates an important capability of this control technique.

It is of particular interest to be able to track drifting UPOsin nonstationary systems. To illus-
trate how this can be done, we use the Hénon map with a randomly drifting parameter:

xn = 1.0− (A+ ηn)x
2

n−1 +Bxn−2, (6)

whereηn is an iterate of a correlated noise process [18], given byηn = 0.999ηn−1 + 4.5× 10−7ζn,
whereζn is Gaussian white noise with unity standard deviation. Figure 2(a) shows the inter-
excitation intervals for a control trial of this nonstationary system. Figure 2(b), (c), and (d) show
the analytically-determinedx⋆n, λsn , andλun

, respectively, and their SVD estimatesx̂⋆n , λ̂sn,
and λ̂un

, respectively. These panels demonstrate that the repeatedSVD estimation was able to
effectively track the drifting parameters [19].

A second method for estimatingλs andλu is applicable when the natural unstable dynamics
are sufficiently strong that SMP control cannot be practically applied. As shown in [12], it is not
necessary for the control parametersλ̂s andx̂⋆ to match the natural parametersλx andx⋆ in order
to accomplish successful control. In the case of a flip saddle, for example, by setting the control
parameter̂x⋆ slightly larger than the true fixed point locationx⋆, the controlled system will have
a period-2 orbit, where control stimuli are provided every second interval. By jiggling the control
parameters in a small range around their nominal values, oneeliminates the linear degeneracy of
Eq. 3 and enablesλs andλu to be separately estimated from the natural triplets(xn+1, xn, xn−1).
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The techniques presented in this study dispense with pre-control data analysis and enable con-
trol of nonstationary UPOs in chaotic and nonchaotic systems. Thus, they are more appropriate
than previous techniques for control of excitable biological systems. This fact, coupled with exper-
imental evidence that model-independent control techniques can modify or eliminate pathological
excitation patterns [1, 5], implies that they may have clinical utility. As one possibility, we note
that in some clinical applications of tachycardia pacing, one uses rapid pacing in order to cap-
ture the tissue’s rhythm, and then gradually slows pacing toreturn the heart to an acceptably slow
rhythm. The techniques described here may be useful in maintaining capture of the rhythm while
the pacing rate is slowed.

While this study demonstrates the feasibility of controllingmodels of excitable biological sys-
tems, important questions regarding the physiological feasibility of control of real excitable bio-
logical systems remain unanswered. One question is whetheror not excitable biological systems
actually contain UPOs. This is a topic of considerable research and debate [20, 15, 21, 22]. An-
other question is whether SMP control stimuli, which are large perturbations to the electrochemi-
cal properties of the system, actually modify the underlying UPO dynamics [11, 13, 14]. Further
investigation is needed to address these, and other, issuesto determine whether such control is
physiologically feasible and clinically useful.
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Figure 1: A trial controlling the chaotic Hénon map of Eq. 5.(a), (b), the inset in (b), and (c) show
the intervalsxn versus interval numbern for various stages of the control trial. Natural intervals
are shown as filled circles, while control-induced intervals are shown as open triangles. (d) shows
the SVD estimates (re-estimated following every non-control interval)λ̂s andλ̂u during the control
stage.

Figure 2: A trial controlling the modified Hénon map of Eq. 6.(a) and the inset in (a) show the
intervalsxn versus interval numbern for the entire trial. Natural intervals are shown as filled
circles, while control-induced intervals are shown as opentriangles. (b), (c), (d), and the inset in
(d) show the analytically-determined (open circles)x⋆n, λsn, andλun

, respectively, and their SVD
estimates (closed circles behind the open circles)x̂⋆n , λ̂sn, andλ̂un

, respectively.
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