Statistics students (and instructors) need experience wrestling with large, messy, complex, challenging data sets, for which there is no obvious goal or specially-curated statistical method. In this example, we consider a case study from a subset of the 180 million record Airline Delays dataset (see http://stat-computing.org/dataexpo/2009 and http://www.amherst.edu/~nhorton/precursors) that includes n=336,776 domestic commercial flights originating in New York City area airports (Newark, JFK, and LaGuardia) in 2013. These data are made available through Hadley Wickham’s nycflights13
package on CRAN, which includes five dataframes. See the appendix for a list of the first few observations in each of these tables.
require(mosaic); require(nycflights13)
Students can use this dataset to address questions that they find real and relevant. (It is not hard to find motivation for investigating patterns of flight delays. Ask students: have you ever been stuck in an airport because your flight was delayed or cancelled and wondered if you could have predicted the delay if you’d had more data?) This dataset is attractive because it is more similar to what analysts actually see in the wild than what is typically taught in the introductory statistics classroom.
We start with an analysis focused on three destination airports in the San Francisco Bay area (OAK, SFO, and SJC).
filter(airports, faa %in% c('SFO', 'OAK', 'SJC'))
## Source: local data frame [3 x 7]
##
## faa name lat lon alt tz dst
## 1 OAK Metropolitan Oakland Intl 37.7 -122 9 -8 A
## 2 SFO San Francisco Intl 37.6 -122 13 -8 A
## 3 SJC Norman Y Mineta San Jose Intl 37.4 -122 62 -8 A
How many flights are there to each airport in January, 2013?
airportcounts <- flights %>%
filter(dest %in% c('SFO', 'OAK', 'SJC')) %>%
group_by(year, month, dest) %>%
summarise(count = n())
filter(airportcounts, month==1)
## Source: local data frame [3 x 4]
## Groups: year, month
##
## year month dest count
## 1 2013 1 OAK 20
## 2 2013 1 SFO 889
## 3 2013 1 SJC 20
Almost all are to San Francisco international (SFO). Let’s take a closer look at what carriers service this route.
airlines <- mutate(airlines, name=as.character(name), carrier=as.character(carrier))
sfoflights <- inner_join(filter(flights, dest=="SFO"), airlines)
## Joining by: "carrier"
tally(~ name, margin=TRUE, data=sfoflights)
##
## American Airlines Inc. Delta Air Lines Inc. JetBlue Airways
## 1422 1858 1035
## United Air Lines Inc. Virgin America Total
## 6819 2197 13331
tally(~ name, format="prop", data=sfoflights)
##
## American Airlines Inc. Delta Air Lines Inc. JetBlue Airways
## 0.1067 0.1394 0.0776
## United Air Lines Inc. Virgin America
## 0.5115 0.1648
United is the largest carrier (it accounts for more than half of the flights.
favstats(arr_delay ~ name, data=sfoflights)
## .group min Q1 median Q3 max mean sd n missing
## 1 American Airlines Inc. -63 -21 -4 18.00 1007 9.68 58.7 1398 24
## 2 Delta Air Lines Inc. -69 -28 -13 3.25 561 -5.88 39.9 1848 10
## 3 JetBlue Airways -64 -23 -7 14.00 445 3.58 46.1 1020 15
## 4 United Air Lines Inc. -73 -21 -6 13.00 422 3.14 42.0 6728 91
## 5 Virgin America -86 -26 -12 7.00 676 3.58 60.4 2179 18
The “average” results (median) is that flights arrive a few minutes early. And even the 3rd quartile or the mean are relatively modest delays (all less than 20 minutes). But the maximum delays can be large.
Those missing values are likely cancelled flights. What month did they tend to occur?
tally(~ month, margin=TRUE, data=filter(sfoflights, is.na(arr_delay)))
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 4 29 11 11 5 11 39 11 7 7 3 20
## Total
## 158
These seem to be most common in July, February, and December.
How should the cancelled flights be handled? Perhaps they could be recoded as 4 hour (240 minute) delays. Let’s see what a graphical description of the data looks like once we recode them.
sfoflights <- mutate(sfoflights, realdelay = ifelse(is.na(arr_delay), 240, arr_delay))
densityplot(~ realdelay, group=name, auto.key=TRUE, xlim=c(-120, 300), data=sfoflights)
We can consider whether the number of flights changes month by month.
library(lubridate)
sfocounts <- filter(airportcounts, dest=="SFO") %>%
mutate(Date = ymd(paste(year, "-", month, "-01", sep="")))
xyplot(count ~ Date, type=c("p","l"), lwd=2,
xlab="Year",
ylab="Number of flights\nto SFO per month", data=sfocounts)
We observe that there are some interesting patterns over the course of the year for SFO.
The nycflights13
package in R includes other data scraped from the Internet (e.g. detailed weather information). We can display the temperature (in degrees Fahrenheit) on New Year’s Day, 2013.
head(weather)
## Source: local data frame [6 x 14]
## Groups: month, day, hour
##
## origin year month day hour temp dewp humid wind_dir wind_speed wind_gust
## 1 EWR 2013 1 1 0 37.0 21.9 54.0 230 10.4 11.9
## 2 EWR 2013 1 1 1 37.0 21.9 54.0 230 13.8 15.9
## 3 EWR 2013 1 1 2 37.9 21.9 52.1 230 12.7 14.6
## 4 EWR 2013 1 1 3 37.9 23.0 54.5 230 13.8 15.9
## 5 EWR 2013 1 1 4 37.9 24.1 57.0 240 15.0 17.2
## 6 EWR 2013 1 1 6 39.0 26.1 59.4 270 10.4 11.9
## Variables not shown: precip (dbl), pressure (dbl), visib (dbl)
xyplot(temp ~ hour, type=c("p", "l"),
ylab="Temperature on\nNew Year's Day", data=filter(weather, month==1 & day==1))
Let’s take a look at daily averages for delays as well as total precipation and maximum wind speed.
avgdelay <- flights %>%
group_by(month, day) %>%
filter(month < 13) %>%
summarise(avgdelay = mean(arr_delay, na.rm=TRUE))
precip <- weather %>%
group_by(month, day) %>%
filter(month < 13) %>%
summarise(totprecip = sum(precip), maxwind = max(wind_speed))
precip <- mutate(precip, anyprecip = ifelse(totprecip==0, "No", "Yes"))
merged <- left_join(avgdelay, precip, by=c("day", "month"))
head(merged)
## Source: local data frame [6 x 6]
## Groups: month
##
## month day avgdelay totprecip maxwind anyprecip
## 1 1 1 12.65 0 16.1 No
## 2 1 2 12.69 0 18.4 No
## 3 1 3 5.73 0 11.5 No
## 4 1 4 -1.93 0 24.2 No
## 5 1 5 -1.53 0 18.4 No
## 6 1 6 4.24 0 15.0 No
A dramatic outlier emerges: windspeeds of 1000 mph are not common!
favstats(~ maxwind, data=merged)
## min Q1 median Q3 max mean sd n missing
## 5.75 12.7 16.1 19.6 1048 19.3 54.4 363 2
filter(merged, maxwind > 1000)
## Source: local data frame [1 x 6]
## Groups: month
##
## month day avgdelay totprecip maxwind anyprecip
## 1 2 12 -2.14 0 1048 No
Let’s remove this outlier and consider the association between any precipiation and average delays.
merged <- filter(merged, maxwind < 1000)
bwplot(avgdelay ~ anyprecip, main="Association of delay with any precipitation", data=merged)
Precipitation seems to be associated with delays.
xyplot(avgdelay ~ maxwind, type=c("p", "smooth"), data=merged)
Max windspeed also seems to be associated with delays.
xyplot(avgdelay ~ maxwind, groups=anyprecip, auto.key=TRUE, type=c("p", "smooth"), data=merged)
After stratifying by precipitation status, we see that windspeed does not appear to be a major determinant of delays.
Your mission: calculate the average delay by destination airport and origin airport for all flights in July, 2013 (hint, use filter()
, group_by()
, and summarise()
).
destdelay <- flights %>%
filter(month==7) %>%
mutate(realdelay = ifelse(is.na(arr_delay), 240, arr_delay)) %>%
group_by(dest, origin) %>%
summarise(count = n(), distance = mean(distance), avgdelay = mean(realdelay)) %>%
filter(count > 100) %>%
ungroup()
filter(destdelay, dest=="DCA")
## Source: local data frame [3 x 5]
##
## dest origin count distance avgdelay
## 1 DCA EWR 126 199 42.9
## 2 DCA JFK 281 213 44.0
## 3 DCA LGA 406 214 31.4
arrange(destdelay, desc(avgdelay))
## Source: local data frame [88 x 5]
##
## dest origin count distance avgdelay
## 1 IAD LGA 152 229 50.2
## 2 CVG EWR 240 569 49.1
## 3 RIC EWR 146 277 46.0
## 4 DCA JFK 281 213 44.0
## 5 STL EWR 216 872 43.9
## 6 CLE LGA 163 419 43.5
## 7 IAD JFK 238 228 43.3
## 8 JAX JFK 124 828 43.0
## 9 DCA EWR 126 199 42.9
## 10 ATL LGA 847 762 42.5
## .. ... ... ... ... ...
xyplot(avgdelay ~ distance, type=c("p", "smooth"), data=destdelay)
xyplot(avgdelay ~ distance, groups=origin, auto.key=TRUE, type=c("p", "smooth"), data=destdelay)
Horton NJ, Baumer BS, and Wickham H. Setting the stage for data science: integration of data management skills in introductory and second courses in statistics, CHANCE, 28(2):40-50, http://chance.amstat.org/2015/04/setting-the-stage.
Wickham H. (2011). ASA 2009 Data Expo, Journal of Computational and Graphical Statistics, 20(2):281-283.
Here is more information on the structure and first few rows of each of the datasets.
airlines
## Source: local data frame [16 x 2]
##
## carrier name
## 1 9E Endeavor Air Inc.
## 2 AA American Airlines Inc.
## 3 AS Alaska Airlines Inc.
## 4 B6 JetBlue Airways
## 5 DL Delta Air Lines Inc.
## 6 EV ExpressJet Airlines Inc.
## 7 F9 Frontier Airlines Inc.
## 8 FL AirTran Airways Corporation
## 9 HA Hawaiian Airlines Inc.
## 10 MQ Envoy Air
## 11 OO SkyWest Airlines Inc.
## 12 UA United Air Lines Inc.
## 13 US US Airways Inc.
## 14 VX Virgin America
## 15 WN Southwest Airlines Co.
## 16 YV Mesa Airlines Inc.
airports
## Source: local data frame [1,397 x 7]
##
## faa name lat lon alt tz dst
## 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A
## 2 06A Moton Field Municipal Airport 32.5 -85.7 264 -5 A
## 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A
## 4 06N Randall Airport 41.4 -74.4 523 -5 A
## 5 09J Jekyll Island Airport 31.1 -81.4 11 -4 A
## 6 0A9 Elizabethton Municipal Airport 36.4 -82.2 1593 -4 A
## 7 0G6 Williams County Airport 41.5 -84.5 730 -5 A
## 8 0G7 Finger Lakes Regional Airport 42.9 -76.8 492 -5 A
## 9 0P2 Shoestring Aviation Airfield 39.8 -76.6 1000 -5 U
## 10 0S9 Jefferson County Intl 48.1 -122.8 108 -8 A
## .. ... ... ... ... ... .. ...
planes
## Source: local data frame [3,322 x 9]
##
## tailnum year type manufacturer model engines
## 1 N10156 2004 Fixed wing multi engine EMBRAER EMB-145XR 2
## 2 N102UW 1998 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
## 3 N103US 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
## 4 N104UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
## 5 N10575 2002 Fixed wing multi engine EMBRAER EMB-145LR 2
## 6 N105UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
## 7 N107US 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
## 8 N108UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
## 9 N109UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
## 10 N110UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
## .. ... ... ... ... ... ...
## Variables not shown: seats (int), speed (int), engine (chr)
flights
## Source: local data frame [336,776 x 16]
##
## year month day dep_time dep_delay arr_time arr_delay carrier tailnum
## 1 2013 1 1 517 2 830 11 UA N14228
## 2 2013 1 1 533 4 850 20 UA N24211
## 3 2013 1 1 542 2 923 33 AA N619AA
## 4 2013 1 1 544 -1 1004 -18 B6 N804JB
## 5 2013 1 1 554 -6 812 -25 DL N668DN
## 6 2013 1 1 554 -4 740 12 UA N39463
## 7 2013 1 1 555 -5 913 19 B6 N516JB
## 8 2013 1 1 557 -3 709 -14 EV N829AS
## 9 2013 1 1 557 -3 838 -8 B6 N593JB
## 10 2013 1 1 558 -2 753 8 AA N3ALAA
## .. ... ... ... ... ... ... ... ... ...
## Variables not shown: flight (int), origin (chr), dest (chr), air_time
## (dbl), distance (dbl), hour (dbl), minute (dbl)
weather
## Source: local data frame [8,719 x 14]
## Groups: month, day, hour
##
## origin year month day hour temp dewp humid wind_dir wind_speed
## 1 EWR 2013 1 1 0 37.0 21.9 54.0 230 10.36
## 2 EWR 2013 1 1 1 37.0 21.9 54.0 230 13.81
## 3 EWR 2013 1 1 2 37.9 21.9 52.1 230 12.66
## 4 EWR 2013 1 1 3 37.9 23.0 54.5 230 13.81
## 5 EWR 2013 1 1 4 37.9 24.1 57.0 240 14.96
## 6 EWR 2013 1 1 6 39.0 26.1 59.4 270 10.36
## 7 EWR 2013 1 1 7 39.0 27.0 61.6 250 8.06
## 8 EWR 2013 1 1 8 39.0 28.0 64.4 240 11.51
## 9 EWR 2013 1 1 9 39.9 28.0 62.2 250 12.66
## 10 EWR 2013 1 1 10 39.0 28.0 64.4 260 12.66
## .. ... ... ... ... ... ... ... ... ... ...
## Variables not shown: wind_gust (dbl), precip (dbl), pressure (dbl), visib
## (dbl)