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dope , n. information especially from a reliable source [the inside dope]; v. figure out –
usually used with out; adj. excellent1

This week’s dope

This we will learn how to

1. Describe plots using the grammar of graphics

2. Make basic plots using ggplot() and qplot()

3. Use aesthetics to enhance plots

4. Use non-default geoms and stats to increase the palette of plots available

5. Use faceting to create sub-plots

This Dope Sheet includes terse descriptions and examples of the main things covered this week. See
the other course materials and the ggplot2 book for more complete descriptions and additional examples.
But note that there have been some changes to ggplot2 since the book was published, so some of the code
used in the book is no longer consistent with the current version of the package.

0 Preliminaries

0.1 Resources

In addition to these Dope Sheets, here are some other useful resources you may wish to consult as you
learn ggplot2.

• The disucssion forums at http://statistics.com.

Take advantage of the discussion forums that will be set up for each week of the course. This is a
place where you can ask individual questions and share your experience with ggplot2.

• The R Graphics Cookbook by Winston Chang

Hadley Wickham’s description: “[This book] provides a set of recipes to solve common graphics
problems. Read this book if you want to start making standard graphics with ggplot2 as quickly as
possible.”

There are a few examples done using lattice, too.

• ggplot2: Elegant Graphics for Data Analysis by Hadley Wickham

Hadley Wickahm’s description: “[This book] describes the theoretical underpinnings of ggplot2 and
shows you how all the pieces fit together. This book helps you understand the theory that underpins
ggplot2, and will help you create new types of graphic specifically tailored to your needs. You can
read sample chapters and download the book code from the book website.”

Once caveat: This book is now a bit out of date and is not completely consistent with the newest
versions of ggplot2. I’ll try to point out some of the differences in the relevant sections of the course
to avoid confusion.

1definitions selected from Webster’s online dictionary
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• http://docs.ggplot2.org/

This site has some nicely formatted documentation for each component in the ggplot2 system.
Thumbnail images can help you locate the right thing, and the examples include plots (unlike the
documentation within R) so you can quickly scan to find an example that matches your needs.

0.2 R and RStudio

I strongly recommend that you use

• an up-to-date version of R

Some of our examples may require R 3.1 or later. It is a good idea to update your R packages as
well. (You can use update.packages() to automate the process.)

• an up-to-date version of RStudio

If you have never used RStudio before, you can learn RStudio as bonus material for this course.
RStudio is an integrated development environment (IDE) for R that runs on Windows, Mac, and
Linux. (It can even be run in a browser if you have access to an RStudio server). It simplifies
the creation and management of files, and generally organizes your work in R much better than the
various alternatives. I’ve been using it for 4 or 5 years now and can’t imagine going back to use other
interfaces.

• RMarkdown

RMarkdown provides an easy way to create documents that include text, R code, R output, and
graphics. RMarkdown is a simple mark-up language that can be used to generate HTML, PDF, or
Word documents in a reproducible workflow. RStudio makes it very easy to work with RMarkdown.
RMarkdown provides the easiest way to do your assignments for this course, but its uses extend well
beyond this and should be a part of every R users workflow.

Find out more about RMarkdown at http://rmarkdown.rstudio.com/

Notes: To create PDF documents, you must have LATEX installed on your computer. For LATEX
users among you, there is also a way to mix R with LATEX to give you more control over the output
formatting. That’s how these notes were created.

0.3 Packages and Data

We will be using the ggplot2 and dplyr packages throughout this class, so we should get in the habit of
making sure they are loaded before we do anything else.2 In addition, for these examples, we will use some
data from the mosaicData package.

require(mosaicData)

require(ggplot2)

require(dplyr)

Additional packages will be introduced as needed. All of the packages used in this course can be installed
via CRAN. RStudio provides a simple interface for doing this, but you can do it manually as well using,
for example

2If you are using RMarkdown, remember that packages must be loaded in each RMarkdown file since the RMarkdown files do not
have access to the console environment.

c©2013–15 • Randall Pruim

http://docs.ggplot2.org/
cran.us.r-project.org
http://rstudio.com
http://rmarkdown.rstudio.com/
http://rmarkdown.rstudio.com/


ggplot2 @ statistics.com Week 1 Dope Sheet Page 3

install.packages("mosaic")

Here are the first few lines of a data set we will use for illustrative purposes.

head(HELPrct, 3)

## age anysubstatus anysub cesd d1 daysanysub dayslink drugrisk e2b female sex g1b homeless

## 1 37 1 yes 49 3 177 225 0 NA 0 male yes housed

## 2 37 1 yes 30 22 2 NA 0 NA 0 male yes homeless

## 3 26 1 yes 39 0 3 365 20 NA 0 male no housed

## i1 i2 id indtot linkstatus link mcs pcs pss_fr racegrp satreat sexrisk substance

## 1 13 26 1 39 1 yes 25.111990 58.41369 0 black no 4 cocaine

## 2 56 62 2 43 NA <NA> 26.670307 36.03694 1 white no 7 alcohol

## 3 0 0 3 41 0 no 6.762923 74.80633 13 black no 2 heroin

## treat

## 1 yes

## 2 yes

## 3 no

Use

?HELPrct

to find out more about this data set. Some of the variables have pretty opaque names. Let’s rename two
variables to give better names for the average and maximum number of drinks per day over the 30 days
prior to admission for substance abuse.

HELPrct <- rename(HELPrct, aveDrinks = i1, maxDrinks = i2)

head(HELPrct, 2)

## age anysubstatus anysub cesd d1 daysanysub dayslink drugrisk e2b female sex g1b homeless

## 1 37 1 yes 49 3 177 225 0 NA 0 male yes housed

## 2 37 1 yes 30 22 2 NA 0 NA 0 male yes homeless

## aveDrinks maxDrinks id indtot linkstatus link mcs pcs pss_fr racegrp satreat

## 1 13 26 1 39 1 yes 25.11199 58.41369 0 black no

## 2 56 62 2 43 NA <NA> 26.67031 36.03694 1 white no

## sexrisk substance treat

## 1 4 cocaine yes

## 2 7 alcohol yes

The rename() function creates a new data frame with some of the variables renamed. By assigning
this new data frame to HELPrct, we have essentially updated HELPrct with different names for two of the
variables. (As an alternative, we could have chosen to add two new variables without losing the original
ones. The mutate() function can be used for this.)

We will also use the Births78 data set.

head(Births78)
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## date births dayofyear wday

## 1 1978-01-01 7701 1 Sun

## 2 1978-01-02 7527 2 Mon

## 3 1978-01-03 8825 3 Tues

## 4 1978-01-04 8859 4 Wed

## 5 1978-01-05 9043 5 Thurs

## 6 1978-01-06 9208 6 Fri

This data set records the number of live births in the United States for each day of 1978. If we ever
modify a data set from a package and need to restore the original version of the data, we can use

data(HELPrct) # (re)load the data from the package

data(Births78)

1 The Grammar of Graphics

ggplot2 is based on (but also different from) a grammar of graphics described in The Grammar of
Graphics by Wilkenson et al. The ggplot2 approach is to build up layered graphics by describing the
elements of the graph in a structured way. It helps to begin with a bit of the vocabulary of the ggplot2

grammar:

geom the geometric “shape” used to display data (other terminology: glyph, mark)

• bar, point, line, ribbon, text, etc.

aesthetic an attribute controlling how geom is displayed (other terminology: property)

• x position, y position, color, fill, shape, size, etc.

coordinate system (a.k.a. coord) Among the aesthetics, the x and y positions are special and get
mapped to positions on the graphics device (e.g., computer screen, pieces of paper, etc.) using a
coordinate system (other terminology: frame).

• x position, y position

statistic (a.k.a., stat) a transformation applied to data before a geom gets it

• example: histograms and bar charts are created from binned data rather than the original data

mapping the matching up of aesthetics with variables so that different values of a variable are represented
by different values of the aesthetic.

scale conversion of raw data to visual display

• particular assignment of colors, shapes, sizes, etc.

guide helps user convert visual data back into raw data

• legends, axes

annotation additional labeling (titles, arrows, etc.) can sometimes make the plot easier to read.

c©2013–15 • Randall Pruim

http://www.amazon.com/Grammar-Graphics-Statistics-Computing/dp/0387245448
http://www.amazon.com/Grammar-Graphics-Statistics-Computing/dp/0387245448


ggplot2 @ statistics.com Week 1 Dope Sheet Page 5

1.1 Describing a plot

One key to successfully creating plots with ggplot2 is learning to describe plots using the grammar outlined
above. For example, consider the following plot.

• coordinate system: The frame is determined by mapping date to the x-axis and births to the
y-axis in the usual Cartesian coordinate system. (Note: ggplot2 is date aware and does the right
thing with the dates on the x-axis.)

• geoms: Each row of our Births78 data frame is represented by a point on the plot.

• other aesthetics: In this example no other variables are being mapped to aesthetics – all the dots
are set to the same shape, size, color, transparency, etc.

• statistic: In this example (and in many others) the identity statistic is being used – the data are
being mapped directly to positions on the plot without an additional transformation.

• guides: The only aesthetics being mapped are x and y. The axes on the plot serve as the guides that
help us do the reverse mapping from a position on the plot onto values that occur in the data.

1.2 Describing another plot

We might conjecture that the reason for the two parallel waves is that fewer children were born on weekends.
By mapping color to the day of the week, we can test whether our conjecture seems correct.

Compared to the previous plot, the following things have changed:

• The geom has changed from points to lines. (This makes it easier to detect days that are “out of
place” relative to the overall pattern.)
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• We are now mapping the day of the week to the color aesthetic.

• An additional guide has beeen added to show which days are mapped to which colors. (The mapping
takes days to colors for displaying and the guide helps us go from colors to days for interpreting the
result.)

The result is a plot that confirms our suspiscion. With only a few exceptions, the days in the lower wave
are weekends and the days in the upper wave are weekdays. (The exceptions are readily seen to coincide
with major US holidays.)

In the next section we will begin learning how to describe the elements of plots such as these in a
language that ggplot2 understands. But the first step to creating plots in ggplot2 is identifying its key
components as outlined above. This is different from some other graphics systems, like lattice, where one
begins by identifying the type of high level plot (histogram, bar chart, scatter plot, etc.) that one wants.
This makes ggplot2 more expressive and flexible, but can make getting started a bit more complicated.3

1.3 One more example

Now let’s consider a more complicated example. This one comes from the New York Times.

• The frame for this graphic is produced by mapping the average score on a mathematics test to the
y-axis and the difference in performance for boys and girls on the x-axis.

3ggplot2 does provide a qplot() function that makes it easier to create several simple plots. We opted to delay introducing qplot()

to make sure we understand the ggplot2 system first.
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• The guide for the y-axis is located in the center of the plot rather than on an edge. The guide for
the x-axis is in the usual place.

• Each country is represented by a point. The region of the world is mapped to one of three fills. (In
ggplot2 color usually refers to the outer color and fill to the internal color.)

• A guide for the mapping of region to fill is in the lower left corner.

• The color of each dot is set to black.

• Some additional text annotations have been added to indicate which dot represents the United
States, to add an alternative guide for the x-axis (at the top of the plot), and to add some additional
contextual information.

• Finally, the left and right halves of this plot are different colors. This could be done by placing
semi-transparent rectangle geom over a portion of the plot.

Once you can look at a plot and identify it componenents like this, it will become relatively straightfor-
ward to recreate the plot using ggplot2 – we just need to learn the particulars of how we communicate the
grammar of graphics to R. If you want some additional exercises, take a look at the idata visulizations of
the New York Times and see if you can describe them using the vocabulary of this grammar of graphics.

2 Describing Plots with ggplot()

2.1 Data and aesthetics

All plots begin with data. For ggplot2, the data must usually be in a data frame. If you have data in
other forms, the first thing you must do is create a data frame containing your data.4

Our first decisions when making a plot are generally to identify the data we want to plot and to define
the appropriate aesthetics. Aesthetics tell ggplot2 how to map variables in the data onto position (x and
y), color, size, transparency, etc. when they are plotted.5

ggplot( Births78, aes(x=date, y=births) )

4Often, the largest part of the taks of creating a plot is getting the data into the correct shape. We’ll talk more about how to do
that in Week 3.

5The situation is actually a little bit more complicated. The mapping establishes the link between the data and an aesthetic, but a
scale determines precisely which values of the data are mapped to which aesthetic values. For now, we will use the default scales, but
eventually we will want to know how to have more control by determining the scales ourselves.
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This alone doesn’t show any plot, however, because ggplot() does not know about any default geoms
or stats, so it doesn’t know what marks to put at each x and y location until we add that information to
our plot object.

2.2 Layers, geoms, and stats

Each layer of a ggplot2 plot requires data, aesthetics, a geom, and a a stat. To get a plot, we need to add
information about our desired geom and stat for each layer:

# We will learn an easier way to do this in just a moment.

ggplot( data=Births78, aes(x=date, y=births) ) +

layer( geom="point", stat="identity")

## Error: Attempted to create layer with no position.

Since each geom comes with a default stat and each stat with a default geom, it suffices to supply only
one of these (provided we are happy with the default value for the other). The functions beginning geom_

and stat_ are short cuts that create layers in a way that is less verbose, so in practice, we will essentially
never use the layer() function. Instead we will do something like

ggplot( Births78, aes(x=date, y=births) ) +

geom_point() # stat_identity is the default

2.3 Aesthetics: mapping and setting

We can make this a bit fancier by setting some of the aesthetics for the points on our plot.

# shape = 21 is a circle with separate color and fill aesthetics.

ggplot( Births78, aes(x=date, y=births) ) +

geom_point(color="navy", fill="skyblue", shape=21)
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Our use of color, fill, and shape here do not code any additional information. We have simply set them to
different values to change the overall look of the plot.

If we want the fill to show the days of the week, we must use mapping rather than setting. To make
things easier, let’s add a variable to our data that stores the day of the week. The wday() function from
the lubridate package will do the computation of weekday from date and mutate() creates a new data
frame that includes the additional variable.

require(lubridate)

Births78 <- mutate(Births78, day=wday(date, label=TRUE, abbr=TRUE))

head(Births78, 2)

## date births dayofyear wday day

## 1 1978-01-01 7701 1 Sun Sun

## 2 1978-01-02 7527 2 Mon Mon

ggplot( Births78, aes(x=date, y=births, fill=day) ) +

geom_point(color="navy", shape=21)

Notice that fill= is now inside aes() in the call to ggplot() rather than an argument to geom_point().
This is how we distinguish between mapping and setting. We could also have made the plot this way:

ggplot( Births78, aes(x=date, y=births) ) +

geom_point(aes(fill=day), color="navy", shape=21)
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or a bit more verbosely using

ggplot( data=Births78, mapping=aes(x=date, y=births) ) +

geom_point( mapping=aes(fill=day), color="navy", shape=21 )

When there is only one layer in the plot, it does not matter whether the aesthetic mapping is defined in
ggplot() or in geom_point(). When there are multliple layers, however, the mapping done in ggplot()

will affect all of the layers, but the mapping done in each layer affects only that layer. The same is true
for data, since different layers may use different data frames.

If we would prefer to use lines, rather than points, we can easily change the geom:

ggplot( Births78, aes(x=date, y=births, color=day) ) +

geom_line()

We can even choose to do both points and lines by creating two layers:
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ggplot( Births78, aes(x=date, y=births) ) +

geom_line( aes(color=day), size=0.8 ) +

geom_point( aes(fill=day), color="navy", shape=21 )

The order of the layers matters. Each layer is created on top of the previous layers.

ggplot( Births78, aes(x=date, y=births) ) +

geom_point( aes(fill=day), color="navy", shape=21 ) +

geom_line( aes(color=day), size=0.8 )

In this case, it is probably better to leave off the dots. The story is clearer with just the lines. Removing
the border on the dots and making the lines a bit thinner would also improve the plot if we wanted to
retain the dots.

ggplot( Births78, aes(x=date, y=births) ) +

geom_point( aes(color=day) ) +

geom_line( aes(color=day), size=0.5 )
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2.4 Stats

So far we have seen only two types of geoms – points and lines. Using the diamonds data set (in the
ggplot2 package), we we will illustrate some additional geoms.

We begin with a histogram of the size (carat) of the diamonds which we can make using geom_bar()
or geom_histogram(), which is essentially another name for geom_bar().

head(diamonds,2)

## Source: local data frame [2 x 10]

##

## carat cut color clarity depth table price x y z

## (dbl) (fctr) (fctr) (fctr) (dbl) (dbl) (int) (dbl) (dbl) (dbl)

## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43

## 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31

ggplot(data=diamonds, aes(x=carat)) +

geom_bar()

ggplot(data=diamonds, aes(x=carat)) +

geom_histogram()

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

This is mostly straightforward. We have mapped carat to the x-axis and selected the histogram geom.
We are even warned that it would be better if we selected the width of the bins ourselves rather than using
the default value. We’ll do that in our next histogram.
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But what about the y-axis? In this case, the default stat is stat_bin(), which creates a new data frame
with one row for each of the bins. A new variable ..count.. gives the number of observations in each
bin. This happens before geom_histogram() draws the bars. We could have chosen to be explicit about
the y-aesthetic, or we can use the new ..count.. in other ways:

ggplot(data=diamonds, aes(x=carat, y=..count..)) +

geom_histogram(binwidth=.2)

ggplot(data=diamonds, aes(x=carat, fill=..count..)) +

geom_histogram(binwidth=.2)

Other variables in the statified data frame allow us to create other types of histograms.

# density

ggplot(data=diamonds, aes(x=carat, y=..density..)) +

geom_histogram()

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

# proportions -- labeling is ugly, but well learn how to fix that later

ggplot(data=diamonds, aes(x=carat, y=..count../sum(..count..))) +

geom_histogram()

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

The list of additional variables computed by stat_bin() can be found with

?stat_bin

We end this section with a more unusual representation of the same information.

ggplot(data=diamonds, aes(x=carat, y=..density..)) +

stat_bin(geom="point", aes(size=..count.., color=..count..), binwidth=0.1)
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By now you should be sensing the power in ggplot2’s flexible appraoch to describing graphics. By
combining a few elements (data, aesthetics, geoms, and stats) in a variety of ways, we can create many
useful (and some not so useful) plots.

2.5 Data flow

As a plot is created the original data set undergoes a sequence of transformations.

original data
stat−→ statified data

aesthetics−→ aesthetic data
scales−→ scaled data

At each stage, the available data are stored in a data frame (actually, one data frame for each layer of each
facet).6 At each step the working data frame is transformed into a new data frame, and it is possible for
new variables to be introduced along the way. This explains why the examples above work the way they
do.

2.6 Some more geoms and stats

2.6.1 Frequency polygons

A histogram is not the only way to display the distribution of a quantiative variable. Frequency polygons
are often preferable. Note that there is no special geom for a frequency polygon. Instead, we combine
geom_line() with stat_bin(). Since neither is the default for the other, we must specify both.

# combining stat_bin() with geom_line() gives a frequency polygon.

ggplot(data=diamonds, aes(x=carat)) +

geom_line(stat="bin", binwidth=0.05)

ggplot(data=diamonds, aes(x=carat)) +

stat_bin(geom="line", binwidth=0.05)

6This is a bit of an oversimplification. Actually, the aesthetics get computed twice, once before the stat and again after. For a
histogram, for example, we need to look at the aesthetics to figure out which variable to bin (that’s the stats job), but it isn’t until
after the binning that we will know the bin counts, which become part of the aesthetics. Nevertheless, the simple version depicted is a
useful starting point. See also page 36 in the ggplot2 book.
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For those unfamiliar with frequency polygons, we can illustrate their connection to histograms by
creating a plot with two layers. (We’ll use fewer bins here so it is easier to see the connection between the
two types of plots.)

ggplot(data=diamonds, aes(x=carat)) +

geom_histogram(alpha=.3, binwidth=0.4, fill="navy") +

geom_line(stat="bin", binwidth=0.4, color="navy")

2.6.2 Density plots

Another common representation of the distribution of a quantitative variable is a density plot. This requires
a new stat: stat_density().

ggplot(data=diamonds, aes(x=carat)) +

stat_density()

The default geom being used is geom_area(), but we could use geom_line() or geom_density() instead
if we preferred. We can also use adjust to control how much smoothing takes place. This is roughly
the equivalent of choosing a binwidth for a histogram. The default value for adjust is 1. Larger values
indicate more smoothing.
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ggplot(data=diamonds, aes(x=carat)) +

stat_density(geom="line", adjust=2)

ggplot(data=diamonds, aes(x=carat)) +

stat_density(geom="density", adjust=0.5)

Alternatively, we could specify the geom and stat this way

ggplot(data=diamonds, aes(x=carat)) +

geom_density()

ggplot(data=diamonds, aes(x=carat)) +

geom_line(stat="density")

ggplot(data=diamonds, aes(x=carat)) +

geom_area(stat="density", adjust=2)

Whichever way we choose to do it, we are telling ggplot() both the stat and the geom that should be
used.

In this particular case, we need to be cautious not to oversmooth and lose part of the story. We have
a lot of data (53940 rows), so the spikey appearance of these plots is likely a feature and not an artifact.
In fact, there is a plausible explanation: the peaks coincide with round numbers. Likely the diamond
producers are targeting diamonds that are approximately 0.5 carat, 1.0 carat, etc. In fact, the peaks seem
to be biased to be just a tad over these round numbers.
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2.6.3 Bar charts

Bar charts are much like histograms but work with a categorical variable. A combination of geom_bar()
and stat_bin() produces a bar chart.

ggplot(data=diamonds, aes(x=color)) +

stat_bin() # geom_bar is the default

## Error: StatBin requires a continuous x variable the x variable is discrete. Perhaps you want stat="count"?

ggplot(data=diamonds, aes(x=color)) +

geom_bar() # stat_bin is the default

2.7 Boxplots

We’ll illustrate one more geom before moving on to other things. Like histograms, boxplots involve a
non-identity stat (stat_boxplot()) that transforms the data. In this case, there is also a special geom
(geom_boxplot()) for rendering the plot.

That’s almost everything you need to know to make a boxplot. The other thing you need to know is
that the variable being summarized with a boxplot must be the y-variable. This explains why the second
of the plots below doesn’t do anything useful.

ggplot( data=diamonds, aes(x=clarity, y=price) ) +

geom_boxplot()

# this doesnt do what we might have expected.

ggplot( data=diamonds, aes(y=clarity, x=price) ) +

geom_boxplot()

## Warning: position_dodge requires non-overlapping x intervals

If we want horizontal boxplots, we need to flip them by using a different coordinate system.
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ggplot( data=diamonds, aes(x=clarity, y=price) ) +

geom_boxplot() +

coord_flip()

With large data sets like this, the “whiskers” of a boxplot may not provide a meaningful comparison of
the different groups. Here are two other options for displaying these data.

ggplot( data=diamonds, aes(x=clarity, y=price) ) +

geom_jitter(alpha=.1) + # randomly jitter the points a bit

coord_flip()

ggplot( data=diamonds, aes(x=clarity, y=price) ) +

geom_violin() +

coord_flip()

2.8 But wait, there’s more

A complete list of geoms and stats can be obtained using apropos().

apropos("^geom_") # list all functions starting geom_

## [1] "geom_abline" "geom_area" "geom_bar" "geom_bin2d" "geom_blank"

## [6] "geom_boxplot" "geom_contour" "geom_count" "geom_crossbar" "geom_curve"

## [11] "geom_density" "geom_density_2d" "geom_density2d" "geom_dotplot" "geom_errorbar"

## [16] "geom_errorbarh" "geom_freqpoly" "geom_hex" "geom_histogram" "geom_hline"
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## [21] "geom_jitter" "geom_label" "geom_line" "geom_linerange" "geom_map"

## [26] "geom_path" "geom_point" "geom_pointrange" "geom_polygon" "geom_qq"

## [31] "geom_quantile" "geom_raster" "geom_rect" "geom_ribbon" "geom_rug"

## [36] "geom_segment" "geom_smooth" "geom_spoke" "geom_step" "geom_text"

## [41] "geom_tile" "geom_violin" "geom_vline"

apropos("^stat_") # list all functions starting stat_

## [1] "stat_bin" "stat_bin_2d" "stat_bin_hex" "stat_bin2d"

## [5] "stat_binhex" "stat_boxplot" "stat_contour" "stat_count"

## [9] "stat_density" "stat_density_2d" "stat_density2d" "stat_ecdf"

## [13] "stat_ellipse" "stat_function" "stat_identity" "stat_qq"

## [17] "stat_quantile" "stat_smooth" "stat_spoke" "stat_sum"

## [21] "stat_summary" "stat_summary_2d" "stat_summary_bin" "stat_summary_hex"

## [25] "stat_summary2d" "stat_unique" "stat_ydensity"

The documentation for these functions can be consulted to learn the options available for each.

2.9 Multiple layers with multiple data sets

Each layer must have data, aesthetics, a geom and a stat, but multiple layers need not share any of these.
It is good practice to put into the arguments of ggplot() those things we are used by all or most of the
layers and leave the rest to be declared in each layer as it is created. In an extreme case, ggplot() might
not use any arguments.

require(scales) # to get the alpha function

D <- filter(diamonds, color=="D")

J <- filter(diamonds, color=="J")

ggplot(mapping=aes(x=carat, y=..density..)) +

geom_histogram(data=D, fill=alpha("navy",0.5), color="navy", binwidth=0.1) +

geom_histogram(data=J, fill=alpha("red",.5), color="red", binwidth=0.1)

ggplot(mapping=aes(x=carat, ymax=..density..)) +

stat_bin(data=D, geom="polygon", fill=alpha("navy",0.5), color="navy", binwidth=0.1) +

stat_bin(data=J, geom="polygon", fill=alpha("red",0.5), color="red", binwidth=0.1)

Notice that the plots above do not have a legend for fill. This is because fill is set, not mapped. We
could use mapping instead, like this:
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ggplot(mapping=aes(x=carat, y=..density..)) +

geom_histogram(data=D, aes(fill=color), alpha=0.5, binwidth=0.1) +

geom_histogram(data=J, aes(fill=color), alpha=0.5, binwidth=0.1)

ggplot(mapping=aes(x=carat, ymax=..density..)) +

stat_bin(data=D, geom="polygon", aes(fill=color), alpha=0.5, binwidth=0.1) +

stat_bin(data=J, geom="polygon", aes(fill=color), alpha=0.5, binwidth=0.1)

An alternative to this approach collects the data on diamonds with colors D and J into single data
frame.

DorJ <- filter(diamonds, color %in% c("D", "J"))

ggplot( data=DorJ, aes(x = carat, y=..density.., fill = color) ) +

stat_bin( geom="ribbon", alpha=0.3, binwidth=0.1, color="black")

## Error: geom_ribbon requires the following missing aesthetics: ymin, ymax

But this does something different. In this plot, the two colors (D and J) are stacked rather than overlaid.
We’ll learn how to avoid this stacking and also how to control the colors selected by the scale in Week 2.

3 Describing Plots with qplot()

ggplot2 provides a short-cut that makes it easy to describe certain simple plots using the qplot() function.
In it’s simplest form, qplot() requires only two or three pieces of information:

• the name(s) of one or two variable(s) providing the data to be displayed (x= and y=), and

• the name of a data frame containing those variables (data=).

qplot() will inspect the variables and attempt to make a reasonable plot depending on whether one or
two variables are provided and whether they are categorical (factors) or quantitative (numeric).
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3.1 One variable plots

# one categorical variable -> geom_bar + stat_bin

qplot( substance, data=HELPrct)

# one quantitative variable -> geom_histogram (+ stat_bin)

qplot( aveDrinks, data=HELPrct)

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

3.2 Two variable plots

When two variables are provided, the result is a scatter plot. The first variable goes on the horizontal axis
and the second on the vertical axis.

# two quantitative variables -> geom_point (+ stat_identity)

qplot( aveDrinks, maxDrinks, data=HELPrct)

# two categorical variables -> geom_point (+ stat_identity)

qplot( sex, substance, data=HELPrct)

# one categorical and one quantitative variable -> geom_point (+ stat_identity)

qplot( sex, aveDrinks, data=HELPrct)

qplot( aveDrinks, sex, data=HELPrct)
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Overplotting of data or labels in these plots might render them less than ideal. This is a common
problem in large data sets or when one or more variables are categorical. We’ll learn some methods for
dealing with this soon.

3.3 Mapping aesthetics with qplot()

With qplot() we can map variables to aesthetics without using the aes() wrapper.

qplot( aveDrinks, maxDrinks, data=HELPrct, color=sex, shape=substance)

qplot( aveDrinks, maxDrinks, data=HELPrct, shape=substance, color=age)

qplot( substance, data=HELPrct, color=sex )

qplot( substance, data=HELPrct, fill=sex )
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3.4 Setting aesthetics

To set an aesthetic to a constant value, wrap that value in I().

qplot( aveDrinks, maxDrinks, data=HELPrct, alpha=I(0.20), size=I(4), shape=I(18),

color=I("navy") )

The use of alpha to make the points quite transparent illustrates one way to deal with overplotting. Where
there is more data, the points (diamond-shaped in this plot) become darker.

3.5 Choosing non-default geoms and stats

We can also select non-default geoms and stats.

qplot( aveDrinks, data=HELPrct, geom="density")

qplot( aveDrinks, data=HELPrct, stat="density")

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

# We can change the geom to avoid the additional line segments added by the density geom

qplot( aveDrinks, data=HELPrct, stat="density", geom="line")

## Error: geom_line requires the following missing aesthetics: y

Similarly, we can create frequency polygons by using the "bin" stat used to create histograms with the
"polygon" or "line" geoms.

c©2013–15 • Randall Pruim



ggplot2 @ statistics.com Week 1 Dope Sheet Page 24

qplot( aveDrinks, data=HELPrct, geom="polygon", stat="bin", binwidth=10)

## Warning: ‘stat‘ is deprecated

## Error: Unknown parameters: binwidth

qplot( aveDrinks, data=HELPrct, geom="line", stat="bin", binwidth=10)

## Warning: ‘stat‘ is deprecated

## Error: Unknown parameters: binwidth

Here are some additional examples.

qplot( aveDrinks, data=HELPrct, geom="line", stat="density", color=substance)

## Warning: ‘stat‘ is deprecated

## Error: geom_line requires the following missing aesthetics: y

qplot( aveDrinks, data=HELPrct, geom="line", stat="bin", binwidth=10, color=substance)

## Warning: ‘stat‘ is deprecated

## Error: Unknown parameters: binwidth

qplot( substance, aveDrinks, data=HELPrct, geom="boxplot")

qplot( substance, aveDrinks, data=HELPrct, geom="jitter")

3.6 More than one geom

It is possible to specify multiple geoms at once. The smooth geom creates a LOESS or regression smoothing
and adds it to the plot.
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qplot( aveDrinks, maxDrinks, data=HELPrct, geom=c("point","smooth"), color=sex )

qplot( aveDrinks, maxDrinks, data=HELPrct, geom=c("point","smooth"), color=sex, alpha=I(.5) )

Many other combinations are possible as well.

qplot(substance, aveDrinks, data=HELPrct, geom=c("boxplot","jitter"), alpha=I(0.2))

qplot(substance, aveDrinks, data=HELPrct, geom=c("violin","jitter"), alpha=I(0.2))

This method works as long as all the geoms involved use the same information. Notice how setting the
color below sets the color for both the lines and the bars. Similarly, binwidth is shared by both geoms.

qplot( aveDrinks, data=HELPrct, geom=c("bar","line"), stat="bin", fill=I("skyblue"), binwidth=10 )

## Warning: ‘stat‘ is deprecated

## Warning: ‘geom_bar()‘ no longer has a ‘binwidth‘ parameter. Please use ‘geom_histogram()‘ instead.

## Error: Unknown parameters: fill, binwidth

qplot( aveDrinks, data=HELPrct, geom=c("bar","line"), stat="bin",

fill=I("skyblue"), color=I("navy"), binwidth=10 )

## Warning: ‘stat‘ is deprecated

## Warning: ‘geom_bar()‘ no longer has a ‘binwidth‘ parameter. Please use ‘geom_histogram()‘ instead.

## Error: Unknown parameters: fill, binwidth

To achieve finer control, we need to work with geoms and stats directly.

ggplot( data=HELPrct, aes(x=aveDrinks)) +

geom_bar(stat="bin", fill="skyblue", color="navy", binwidth=10) +

geom_line(stat="bin", color="red", size=2, alpha=0.6, binwidth=10)

## Warning: ‘geom_bar()‘ no longer has a ‘binwidth‘ parameter. Please use ‘geom_histogram()‘ instead.
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3.7 qplot() or ggplot()?

It is tempting for beginners to focus their attention on qplot() and to ignore ggplot(): Many of the most
commonly used plots are easily made using qplot(), the amount of typing is often slightly less, and one
doesn’t need to understand the ggplot2 system as well to get a plot made. The immediate gratification
of making beautiful plots without much effort or thought can be intoxicating.

The downside of qplot() is that is not as flexible, and eventually ggplot() will be required. Learning
to use ggplot() early will make it clearer why ggplot2 behaves the way it does and is better preparation
for the day when a truly custom plot is required to communicate the story of the data clearly. You are
encouraged to use ggplot() as much as possible, even early on. If you are able to make a plot with
qplot() and cannot replicate it with ggplot(), treat it as an opportunity to understand more fully how
ggplot2 works.

4 Dealing with overplotting in large data sets

We will return to this issue repeatedly during the course, learning more approaches as we go along.
Solutions fall into one of several general categories:

• Use faceting to reduce the amount of data in each subplot

• Use transparency (alpha) to reveal where overplotting is occuring

• Use the jitter geom instead of the point geom when there is significant discreteness in the data. This
moves the points by a small random amount. Some accuracy is sacrificed for the sake of readability.

• Use plots that employ data reduction (e.g., boxplots, histograms, LOESS)

Exercises

1 Take a look at the data visulizations of the New York Times and see if you can describe them using
the vocabulary of the grammar of graphics. (You won’t be able to recreate them unless you can find the
necessary data somewhere.)

2 For each plot in this chapter created using qplot(), recreate the plot using ggplot().
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3 Read the help page for a geom that you haven’t used before and use it to make a plot. Note that each
geom lists the aesthetics that it understands (and which are required) as well as the default statistic that
it uses.

You might prefer the documentation at http://docs.ggplot2.org/ to the documentation in the pack-
age since all the plots from the examples appear in the documentation.

Document Creation

• File creation date: 2016-01-14

• R version 3.2.3 Patched (2015-12-10 r69760)

• ggplot2 package version: 2.0.0

• dplyr package version: 0.4.3.9000

• mosaicData package version: 0.13.0

dope , n. information especially from a reliable source [the inside dope]; v. figure out –
usually used with out; adj. excellent7

This week’s dope

This week we will learn how to

1. Use faceting to create multi-panel plots

2. Use position controls (jitter, dodge, and stack)

3. Customize the scales used when mapping variables to aesthetics

4. Set the limits of the viewing window for a plot.

5. Modify the labeling of axes and add titles to plots.

Note: The plots in this document are rendered as png files to reduce the overall file size at the price of some quality.

5 Faceting

Sometimes overplotting can obscure patterns rather than reveal them.

HELPrct <- mutate(HELPrct, aveDrinks = i1, maxDrinks = i2)

## Error in eval(expr, envir, enclos): binding not found: ’i1’

qplot( aveDrinks, maxDrinks, data=HELPrct, color=substance, shape=sex )

7definitions selected from Webster’s online dictionary
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Faceting creates separate sub-plots for each subset. Faceting is described with a formula and works the
same way whether we create our plot with ggplot() or with qplot().

qplot( aveDrinks, maxDrinks, data=HELPrct) +

facet_grid(sex ~ substance)

Redundant coding is sometimes useful even when faceting.

qplot( aveDrinks, maxDrinks, data=HELPrct, color=substance, shape=sex) +

facet_grid(sex ~ substance)
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We can also use facet_grid() with only one variable – just put a “dot” in place of the missing variable:

qplot( aveDrinks, maxDrinks, data=HELPrct, color=substance, shape=sex) +

facet_grid(. ~ substance)

qplot( aveDrinks, maxDrinks, data=HELPrct, color=substance, shape=sex) +

facet_grid( substance ~ . )

facet_wrap() can be used when we have one variable for faceting and that variable has many levels

ggplot( data=diamonds, aes(x=carat, y=price, color=color) ) +

geom_point( alpha=0.1 ) +

geom_smooth( se=FALSE, color="black" ) +

facet_wrap( ~ color)
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6 Position – jitter, stack, and dodge

We’ve already seen geom_jitter(), which is really just geom_point() with position="jitter".

ggplot( data=HELPrct, aes(x=substance, y=aveDrinks)) +

geom_jitter()

ggplot( data=HELPrct, aes(x=substance, y=aveDrinks)) +

geom_point(position="jitter")

Jittering adds a bit of random noise to the data to help avoid collisions. We can exert more precise
control over the jittering if we use position_jitter(). Since no information is lost when jittering (slightly)
a categorical variable, it is often a good idea to jitter only in one direction when plotting a categorical
varaible against a quantitative variable.

ggplot( data=HELPrct, aes(x=substance, y=aveDrinks)) +

geom_point(position=position_jitter(width=0.1, height=0), alpha=0.5)
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Two other position adjustments are stacking and dodging. Stacking is the default for geom_bar() and
results in segmented bar charts. Dodging is similar to jitter, but for discrete variables.

ggplot( diamonds, aes(x=color, fill=cut)) +

geom_bar()

ggplot( diamonds, aes(x=color, fill=cut)) +

geom_bar(position="dodge")

Dodging often yields results that are similar to faceting, but the labeling is different, and the results can
be less than pleasing if some of the discrete categories are unpopulated.

ggplot(mpg, aes(x=class, fill=factor(cyl))) +

coord_flip() +

geom_bar(position="dodge")

ggplot(mpg, aes(x=factor(cyl), fill=factor(cyl))) +

coord_flip() +

geom_bar() +

facet_grid( class ~ . )
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7 Scales

As a plot is created the original data set undergoes a sequence of transformations. At each stage, the
available data are stored in a data frame (actually, one data frame for each layer of each facet).8

original data
stat−→ statified data

aesthetics−→ aesthetic data
scales−→ scaled data

In Week 1 we looked at a schematic of the data flow when creating plots with ggplot2, but we said

relatively little about scales.
The final data transformation performed by scales translates the aesthetic data into something the

computer can use for plotting. (Scales also control the rendering of guides – a collective term for axes
and legends – which are the inverse of scales in that they help humans convert from what is visible on the
plot back into the units of the underlying data.) The x- and y-positions are mapped to the interval [0, 1],
and other aesthetics must be mapped to actual colors, sizes, etc. that are used by the geom to render the
plot.

7.1 Position scales

Position scales may be either continuous (for numerical data), discrete (for factors, characters, and logicals),
or date. Each scale has appropriate arguments for controlling how the scale works. Commonly used
arguments include

• trans a transformation to apply to the variable (e.g., "log10")

• breaks manually set the break points for the axes.

• label the name of a emphfunction for processing the values appearing on the axes. Use format=dollar
to format as US currency (dollar() is in the scales package).

• name the name displayed on the guide. This can be useful if the variable name is not appropriate for
this purpose.

• limits for limiting the data used to create the plot.

Here are a few examples.

a <- 1:10; b <- 4 * a^3

artificial <- data.frame(a=a, b=b)

p <- ggplot(data=artificial, aes(x=a, y=b) ) +

geom_point()

p

# log scaling on the x axis

p +

scale_x_continuous(trans="log10")

# Note: dollar is a _function_ in the scales package that formats things as money

8This is a bit of an oversimplification. Actually, the aesthetics get computed twice, once before the stat and again after. For a
histogram, for example, we need to look at the aesthetics to figure out which variable to bin (that’s the stats job), but it isn’t until
after the binning that we will know the bin counts, which become part of the aesthetics. Nevertheless, the simple version depicted is a
useful starting point. See also page 36 in the ggplot2 book.
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require(scales)

p +

scale_x_continuous(trans="log10", breaks=seq(2,10,by=2), label=dollar) +

scale_y_continuous(trans="log10", name="your name here")

The limits argument of a position scale can be used to limit the data displayed.

p +

scale_x_continuous(trans="log10", breaks=seq(2,10,by=2), label=dollar, limits=c(4,8))

## Warning: Removed 5 rows containing missing values (geom_point).

We will see another way to change the viewing window of a plot in Section 8.

7.2 Discrete color and shape scales

Scales are also used to control how aesthetics are mapped to colors and shapes. scale_color_manual()
can be used to determine exactly which colors are used by a discrete color scale. The values vector used
by scale_color_manual() and scale_shape_manual() may be named or unnamed. If unnamed, the
matching is done by order.
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p <- ggplot( data=iris, aes(Sepal.Length, Sepal.Width) )

p +

geom_point(aes(color=Species)) +

scale_color_manual(

values=c(setosa="orange", versicolor="purple", virginica="skyblue"))

p +

geom_point(aes(shape=Species, color=Species), size=5, alpha=.5) +

scale_shape_manual(values=c(20,18,17))

There are also a number of scales that provide various color “palettes”.

p +

geom_point(aes(color=Species), size=5, alpha=.5) +

scale_color_brewer(type="qual", palette=1, name="iris species")

For more examples, see the http://docs.ggplot2.org/. To find a list of scale functions, use apropos():

apropos("^scale_")

## [1] "scale_alpha" "scale_alpha_continuous" "scale_alpha_discrete"

## [4] "scale_alpha_identity" "scale_alpha_manual" "scale_color_brewer"

## [7] "scale_color_continuous" "scale_color_discrete" "scale_color_distiller"

## [10] "scale_color_gradient" "scale_color_gradient2" "scale_color_gradientn"

## [13] "scale_color_grey" "scale_color_hue" "scale_color_identity"

## [16] "scale_color_manual" "scale_colour_brewer" "scale_colour_continuous"

## [19] "scale_colour_discrete" "scale_colour_distiller" "scale_colour_gradient"

## [22] "scale_colour_gradient2" "scale_colour_gradientn" "scale_colour_grey"

## [25] "scale_colour_hue" "scale_colour_identity" "scale_colour_manual"

## [28] "scale_fill_brewer" "scale_fill_continuous" "scale_fill_discrete"

## [31] "scale_fill_distiller" "scale_fill_gradient" "scale_fill_gradient2"

## [34] "scale_fill_gradientn" "scale_fill_grey" "scale_fill_hue"
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## [37] "scale_fill_identity" "scale_fill_manual" "scale_linetype"

## [40] "scale_linetype_continuous" "scale_linetype_discrete" "scale_linetype_identity"

## [43] "scale_linetype_manual" "scale_radius" "scale_shape"

## [46] "scale_shape_continuous" "scale_shape_discrete" "scale_shape_identity"

## [49] "scale_shape_manual" "scale_size" "scale_size_area"

## [52] "scale_size_continuous" "scale_size_discrete" "scale_size_identity"

## [55] "scale_size_manual" "scale_x_continuous" "scale_x_date"

## [58] "scale_x_datetime" "scale_x_discrete" "scale_x_log10"

## [61] "scale_x_reverse" "scale_x_sqrt" "scale_y_continuous"

## [64] "scale_y_date" "scale_y_datetime" "scale_y_discrete"

## [67] "scale_y_log10" "scale_y_reverse" "scale_y_sqrt"

7.3 Continuous color scales

Continuous variables cannot be mapped to shape, but they can be mapped to color, in which case a
spectrum of colors is used.

ggplot( data=iris, aes(Sepal.Length, Sepal.Width) ) +

geom_point(aes(color=Petal.Length)) +

scale_color_continuous(low="blue", high="red")

Those colors are bit hard to look at. Let’s mute them a bit

require(scales)

ggplot( data=iris, aes(Sepal.Length, Sepal.Width) ) +

geom_point(aes(color=Petal.Length), alpha=0.7, size=2.5) +

scale_color_continuous(low=muted("blue"), high=muted("red"))

Divergent scales move in two directions out from a central value. We can also limit the range of the
color scale and map all values outside that range to a color of our choice.
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ggplot( data=iris, aes(Sepal.Length, Sepal.Width) ) +

geom_point(aes(color=Petal.Length), size=2.5) +

scale_color_gradient2(low=muted("blue"), high=muted("red"), mid="gray80",

midpoint = 3, limits=c(2,6), na.value="yellow")

The use of limits can greatly improve the plot if there are small number of outliers with values far
from the others.

8 Coordinate systems

A coordinate system controls how positions are mapped to the plot. The most common (and default)
coordinate system is Cartesian coordinates.

8.1 coord_flip()

We have already encountered coord_flip(), which reverses the roles of the horizontal and vertical axes.
This allows us, for example, to create horizontal boxplots.

ggplot(diamonds, aes(x=color, y=carat)) +

geom_boxplot() +

coord_flip()

8.2 coord_polar()

There are relatively few uses for the polar coordinate scheme, but it does allow us to create pie charts
(for which there are also relatively few good uses). A pie chart is simply a stacked bar chart in polar
coordinates.
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ggplot( data=HELPrct, aes(x=factor(1), fill=substance)) +

geom_bar(width=1) + # avoid space between "bars"

coord_polar(theta="y")

There is more labeling here than is typical for a pie chart, but since a regular bar chart is easier to read,
we won’t bother with optimizing this plot.

The default value for theta is "x", which produces a “bulls-eye” plot.

ggplot( data=HELPrct, aes(x=factor(1), fill=substance)) +

geom_bar(width=1) + # avoid space between "bars"

coord_polar()

8.3 coord_map()

We have not yet discussed maps, which require a projection from a sphere to the plane to render on a flat
graphics device. coord_map() faciliates selecting one of several such projections when rendering maps.

8.4 Using coords to zoom

One additional use for a coordinate system is to zoom in on a portion of a plot using xlim and ylim.
Setting limits in a scale removes all data outside those limits from the data frame used to generate the
plot; setting the limits in a coord merely restricts the view – all the data are still used. The difference is
illustrated below. Notice the differences in the smoothing function and also differences in the plot window
used.

ggplot(mpg, aes(cty,hwy)) +

geom_point() + geom_smooth()
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ggplot(mpg, aes(cty,hwy)) +

geom_point() + geom_smooth() + scale_x_continuous(limits=c(15,25))

ggplot(mpg, aes(cty,hwy)) +

geom_point() + geom_smooth() + coord_cartesian(xlim=c(15,25))

When working with discrete data, the limits are set as numerical values in the coord system but as
natural values in the scale (and need not be contiguous or in the original order). There’s really no reason
for a legend on these plots, so let’s turn it off.9

p <- ggplot(diamonds, aes(x=color, y=carat, color=color)) +

geom_boxplot()

p +

scale_x_discrete(limits=c("E","J", "G")) +

theme(legend.position="none")

p +

coord_cartesian( xlim=c(1.5,4.5) ) +

theme(legend.position="none")

Be sure to leave enough room when setting limits from within a coord as no additional room will be added
to accomodate geoms that are not completely contained in the viewing window.

9We’ll have more to say about theme() later. Note that theme() replaces opt() from older versions of ggplot2.
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p +

coord_cartesian( xlim=c(1,5) ) +

theme(legend.position="none")

9 Some shortcuts

9.1 qplot()

Since qplot() produces a plot, we can add to it just like we do other plots.

qplot( carat, data=diamonds) + coord_flip()

qplot() also provides quick access to some common plot modifications:

• log="x", log="y", and log="xy" can be used for log-transformations of x or y.

• main= can be used to create a plot title.

9.2 xlim() and ylim()

Since limiting the values on a plot is so common, ggplot2 provides the xlim() and ylim() to set limits
without needing to directly invoke scales.

qplot( carat, price, data=diamonds, alpha=I(0.3)) + xlim(c(1,2))
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9.3 labs(), xlab(), ylab()

labs() provides a quick way to add labels for the axes and a title for the plot. xlab() and ylab() are
equivalent to labs(x=...) and labs(y=...).

ggplot(diamonds, aes(x=color, y=carat, color=color)) +

geom_boxplot() +

labs(title="Now I have a title", x="color of diamond", y="size (carat)")

10 Dealing with overplotting in large data sets

When there is a high degree of discreteness in the data or the data is very large, multiple points may land
on the same position making it impossible to tell whether there is a lot or a little data there. Here are
several methods for dealing with “too much data for the plot”.

10.1 Jittering

If the primary problem is discreteness and the data set is not too large, simply jittering the position a bit
can be a sufficient solution.

10.2 Using transparency

A similarly simple solution is to use transparency so that where there is more data, the plot becomes
darker.
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10.3 Use plots that rely on data reduction

For 1d plots, histograms, density plots, and boxplots all use data reduction methods, so these plots work
well for data sets of all sizes – except very small data sets, I suppose.

For 2d data, instead of scatterplots, we can use 2d versions of histograms that use rectangular or
hexagonal (requires the hexbin package) bins and use color to represent the bin frequency.

p <- ggplot( diamonds, aes(x = carat, y=depth) )

p + stat_bin2d()

require(hexbin) # You may need to install this package from source

## Loading required package: hexbin

p + stat_binhex()

Alternatively, we can plot the contours of a 2d kernel density estimate.

p + stat_density2d()

p + ylim(c(55,68)) +

stat_binhex(aes(fill=..density..)) +

stat_density2d(color="gray75", size=.3)

## Warning: Removed 110 rows containing non-finite values (stat_binhex).

## Warning: Removed 110 rows containing non-finite values (stat_density2d).

## Warning: Removed 11 rows containing missing values (geom_hex).
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dope , n. information especially from a reliable source [the inside dope]; v. figure out –
usually used with out; adj. excellent10

This week’s dope

Often the key to creating a good plot in ggplot2 is getting data into a format that makes it possible to
create the plot you want. So, while we will continue to hone our skills at making plots using ggplot2,
much of this week’s content will be about “data wrangling.” In particular, we will learn how to

1. Use the five basic functions in dplyr to modify data frames

(a) filter() to select rows from a data frame meeting some criterion

(b) select() to select rows from a data frame meeting some criterion

(c) mutate() to add new variables to a data frame

(d) summarise() to create new data frames summarizing existing data frames.

(e) arrange() to re-order the rows of a data frame.

2. Use group_by() and the split-apply-combine methodology to apply a function to many subsets of a
data frame.

3. Use interaction() to combine two variables into one

4. Use merge(), and the various join functions from dplyr to combine data from multiple data frames.

5. Use gather() and spread() from the tidyr package to reshape data frames.
10definitions selected from Webster’s online dictionary
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Data Verbs

Most of the functions introduced here have two important properties in common:

1. The first argument is data (typically a data.frame or a tbl_df).

• Additional arguments describe what will “happen to” the data.

2. The returned value is data (typically a data.frame or a tbl_df).

We can think of these as “data verbs” that “do stuff” to data. Once we learn how the data verbs work in
isolation, we can chain them together, one after the other, to obtain our desired result.

data
do something−→ do more−→ do more−→ · · ·

Baby Names

The primary data set used in our examples is in the babynames R package. The babynames data frame
has data on all names given to at least 5 children born in the US each year from 1880 through 2013. As
we can see, the number of such names is greater for girls than for boys and has been increasing for both
girls and boys (although there is an interesting dip for both beginning around 1925).

require(babynames)

require(ggplot2)

require(dplyr)

dim(babynames)

## [1] 1792091 5

head(babynames, 3)

## Source: local data frame [3 x 5]

##

## year sex name n prop

## (dbl) (chr) (chr) (int) (dbl)

## 1 1880 F Mary 7065 0.07238359

## 2 1880 F Anna 2604 0.02667896

## 3 1880 F Emma 2003 0.02052149

ggplot(data=babynames, aes(x=year, fill=sex)) +

geom_histogram(binwidth=1) + facet_grid( sex ~ . )

ggplot(data=babynames, aes(x=year, color=sex)) +

geom_line(stat="bin", binwidth=1)

c©2013–15 • Randall Pruim



ggplot2 @ statistics.com Week 3 Dope Sheet Page 44

11 Subsetting with filter()

While is is possible to do subsetting operations by passing logicals into the [ ] operator in R, it is sometimes
simpler and clearer to use the filter() function. The general form of a subsetting command is:

newdataframe <- filter( dataframe, condition )

The condition should evaluate to a logical and will often reference variables in the data frame being
subsetted. The $ operator is not required to reference these variables, which is a big savings for complicated
subsets.

Boys <- filter(babynames, sex=="M")

Girls <- filter(babynames, sex=="F")

Here’s something a bit more interesting:

AtLeast1PercentGirls <- filter(babynames, sex=="F" & prop > 0.01)

ggplot(aes(x=year), data=AtLeast1PercentGirls) +

geom_histogram(binwidth=1,

origin=1879.5, # center bins on integers

fill="skyblue"

)

ggplot(aes(x=year), data=AtLeast1PercentGirls) +

geom_line(binwidth=1,

origin=1879.5, # center bins on integers

color="skyblue", size=2,

stat="bin"

)

So over past few decades, the number of names given to at least 1% of the girls has been decreasing. In
section 19.2 we will see how to plot the proportion of girls who have names shared with at least 1% of the
girls born each year.
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12 Adding new variables to a data frame with mutate()

If we would prefer to work with percentages instead of proportions, we could create a new variable for
that.11

Bnames <- mutate(babynames, percent=100 * prop)

head(Bnames,3)

## Source: local data frame [3 x 6]

##

## year sex name n prop percent

## (dbl) (chr) (chr) (int) (dbl) (dbl)

## 1 1880 F Mary 7065 0.07238359 7.238359

## 2 1880 F Anna 2604 0.02667896 2.667896

## 3 1880 F Emma 2003 0.02052149 2.052149

More interestingly, we can compute some information from the names themselves. First, let’s define a
few helper functions.

subword <- function(x, start=1, stop=start) {
# convert negative numbers to positions relative to end of string

start <- rep(start, length.out=length(x))

stop <- rep(stop, length.out=length(x))

start <- ifelse(start < 0, pmax(nchar(x) + 1 + start), start)

stop <- ifelse(stop < 0, pmax(nchar(x) + 1 + stop), stop)

if (any(start > stop)) { warning("Some values of start are greater than values of stop.") }
tolower(substr(x, start, stop))

}

vowels <- function(x) {
nchar(gsub("[^aeiouy]", "", tolower(x)))

}

Now let’s add some variables to our data frame:12

Bnames <- mutate( babynames,

first=subword(name, 1),

last=subword(name, -1),

length=nchar(name),

vowels=vowels(name),

consonants=length - vowels, # transform cant do this part

vowelFrac=vowels/length # or this part

)

head(Bnames,3)

11But if the only reason to do so is to get percentages to appear on a plot, there is no reason to do so. Instead, ggplot2 can be
instructed to format the scales using percent notation rather than decimal notation – simply pass labels=percent to the approprate
scale(s). See Section 19.2 for an example.

12We could also have used transform() to do this. The primary difference between mutate() and tranform() is that mutate() can
refer to variables created earlier in the mutate() command, but transform() cannot. So the example here would require multiple calls
to transform() or recomputation of the values stored in length and vowels.
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## Source: local data frame [3 x 11]

##

## year sex name n prop first last length vowels consonants vowelFrac

## (dbl) (chr) (chr) (int) (dbl) (chr) (chr) (int) (int) (int) (dbl)

## 1 1880 F Mary 7065 0.07238359 m y 4 2 2 0.5

## 2 1880 F Anna 2604 0.02667896 a a 4 2 2 0.5

## 3 1880 F Emma 2003 0.02052149 e a 4 2 2 0.5

13 Combining variables with interaction()

Sometimes it is convenient to combine two (or more) variables into one factor that contains the values of
each of the original variables.

13.1 Vowels and consonants

Here is an example using interaction() to add a factor called vcsplit that tells us now many vowels
and how many consonants are in a name. drop=TRUE removes unpopulated levesl from the factor.

Bnames <- mutate(Bnames,

vcsplit=interaction(vowels, consonants, sep=":", drop=TRUE)

)

head(Bnames,3)

## Source: local data frame [3 x 12]

##

## year sex name n prop first last length vowels consonants vowelFrac vcsplit

## (dbl) (chr) (chr) (int) (dbl) (chr) (chr) (int) (int) (int) (dbl) (fctr)

## 1 1880 F Mary 7065 0.07238359 m y 4 2 2 0.5 2:2

## 2 1880 F Anna 2604 0.02667896 a a 4 2 2 0.5 2:2

## 3 1880 F Emma 2003 0.02052149 e a 4 2 2 0.5 2:2

13.2 mpg data set

Returning to our mpg data set for a moment, we might like to create a variable that encodes more specific
model information than the model variable does. First we’ll add “wd” (for ‘wheel drive‘) to the drv
variable, and then we’ll combine several variables into a new definition of model, which we will call model2

mpg2 <- mutate(mpg,

drv = paste(drv,"wd", sep=""),

model2 = interaction(manufacturer, model, trans, fl, drv, sep=" ", drop=TRUE)

)

head(mpg2,3)

## Source: local data frame [3 x 12]

##
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## manufacturer model displ year cyl trans drv cty hwy fl class

## (chr) (chr) (dbl) (int) (int) (chr) (chr) (int) (int) (chr) (chr)

## 1 audi a4 1.8 1999 4 auto(l5) fwd 18 29 p compact

## 2 audi a4 1.8 1999 4 manual(m5) fwd 21 29 p compact

## 3 audi a4 2.0 2008 4 manual(m6) fwd 20 31 p compact

## Variables not shown: model2 (fctr)

sep=" " defines the separator between the components, and drop=TRUE drops unused levels from the
resulting factor. After making one more modification (to order the models according to their best fuel
efficiency), we can use our modified data frame to create the plot in Figure 1.

mpg2 <- mutate( mpg2,

model2=reorder(model2, hwy, max) )

ggplot(

data=filter(mpg2,class=="compact"),

aes(hwy, model2,

colour=factor(year),

shape=factor(year))) +

geom_point(size=4, alpha=.5) +

scale_colour_manual(values=c("blue","red")) +

labs(shape="Year", colour="Year")

14 Chaining syntax using %>%

The magrittr package (which is automatically loaded when dplyr or mosaic are loaded) defines a piping
operator %>% that provides an alternative syntax that is often more covenient, espcially as things become
more complicated. The %>% operator (which can be read as “then”) inserts the result of the left hand side
as the first argument to the right hand side. That is, the following two lines of code are equivalent:

f(x,y)

x %>% f(y)

Here is a more interesting example showing two equivalent data operations.

Bnames %>%

filter(sex=="F" & prop > 0.01) %>%

head(3)

## Source: local data frame [3 x 12]

##

## year sex name n prop first last length vowels consonants vowelFrac vcsplit

## (dbl) (chr) (chr) (int) (dbl) (chr) (chr) (int) (int) (int) (dbl) (fctr)

## 1 1880 F Mary 7065 0.07238359 m y 4 2 2 0.5 2:2

## 2 1880 F Anna 2604 0.02667896 a a 4 2 2 0.5 2:2

## 3 1880 F Emma 2003 0.02052149 e a 4 2 2 0.5 2:2

head( filter(Bnames, (sex=="F" & prop > 0.01) ), 3 )
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Figure 1: Fuel efficiency for each year and each model of car
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## Source: local data frame [3 x 12]

##

## year sex name n prop first last length vowels consonants vowelFrac vcsplit

## (dbl) (chr) (chr) (int) (dbl) (chr) (chr) (int) (int) (int) (dbl) (fctr)

## 1 1880 F Mary 7065 0.07238359 m y 4 2 2 0.5 2:2

## 2 1880 F Anna 2604 0.02667896 a a 4 2 2 0.5 2:2

## 3 1880 F Emma 2003 0.02052149 e a 4 2 2 0.5 2:2

Among the advantages of using %>% are:

1. Code can be written in the order in which things happen:

Start with Bnames, then filter it to include only girls names that are more popular than 1%, then
show me the first 3 lines.

2. Arguments remain near the functions they are arguments to.

3. It is easier to match parentheses.

Each of these advantages will become more important as we chain successively more operations.

15 Removing variables with select()

If we want to select only certain columns from our data frame (perhaps to make a data display easier to
read or perhaps to reduce the size of our data set by removing unneeded variables from the data frame),
we can use select()

AtLeast1PercentGirls %>% select(year, name, prop) %>% head

## Source: local data frame [6 x 3]

##

## year name prop

## (dbl) (chr) (dbl)

## 1 1880 Mary 0.07238359

## 2 1880 Anna 0.02667896

## 3 1880 Emma 0.02052149

## 4 1880 Elizabeth 0.01986579

## 5 1880 Minnie 0.01788843

## 6 1880 Margaret 0.01616720

# we can also select "negatively"

AtLeast1PercentGirls %>% select( -sex ) %>% head

## Source: local data frame [6 x 4]

##

## year name n prop

## (dbl) (chr) (int) (dbl)

## 1 1880 Mary 7065 0.07238359

## 2 1880 Anna 2604 0.02667896

## 3 1880 Emma 2003 0.02052149

## 4 1880 Elizabeth 1939 0.01986579

## 5 1880 Minnie 1746 0.01788843

## 6 1880 Margaret 1578 0.01616720
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16 Summarising a data frame with summarise()

summarise() is analogous to mutate(), but summarise() creates a new 1-row data frame instead of adding
variables to an existing data frame. As with mutate(), we can create several variables at once if we like.

summarise(Bnames, avg.length = mean(length), max.pop = max(prop) )

## Source: local data frame [1 x 2]

##

## avg.length max.pop

## (dbl) (dbl)

## 1 6.174078 0.08154561

The real power of summarise() comes in combination with group_by(), the topic of our next section.

Note: dplyr also includes a synonym, summarize(), but there is also a summarize() function
in the Hmisc package. If you use the Hmisc package, you will need to load things in the right
order to have summarize() do what you want it to do.

17 Split-apply-combine using group_by()

Suppose we would like to know how the average name length and maximum popularity have changed over
time, separately for each sex. That is, we would like to

1. Split our data frame into many subsets, one for each unique combination of year and sex;

2. Apply our summarise() function to each of these subsets; and

3. Combine all the results into one data frame.

This is exactly what group_by() facilitates. Let’s give it a try:

BnameSummariesByYearAndSex <-

Bnames %>%

group_by(year,sex) %>% # group by year and sex

summarise( # summmarise each group/sex combination

max.prop = max(prop),

avg.length = mean(length), # per name

avg.length2 = sum(length * prop) / sum(prop), # per child

vowelFrac=mean(vowelFrac ), # per name

vowelFrac2=sum(vowelFrac * prop) / sum(prop) # per child

) # the summaries are combined automatically

head(BnameSummariesByYearAndSex,3)

## Source: local data frame [3 x 7]

## Groups: year [2]

##

## year sex max.prop avg.length avg.length2 vowelFrac vowelFrac2

## (dbl) (chr) (dbl) (dbl) (dbl) (dbl) (dbl)

## 1 1880 F 0.07238359 5.773885 5.408647 0.4934916 0.4934916

## 2 1880 M 0.08154561 5.634216 5.593460 0.4101043 0.4101043

## 3 1881 F 0.06998999 5.750533 5.398917 0.4955122 0.4955122
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Notes:

1. The group_by() function adds information to the data describing the groups. These groups are then
used by downstream applications of functions like summarise() and mutate(). Sometimes we will
want to turn off the grouping, this is done with ungroup(). Neither of the options change the data
itself, only the grouping information associated with the data.

Bnames %>% group_by(year, sex)

## Source: local data frame [1,792,091 x 12]

## Groups: year, sex [268]

##

## year sex name n prop first last length vowels consonants vowelFrac

## (dbl) (chr) (chr) (int) (dbl) (chr) (chr) (int) (int) (int) (dbl)

## 1 1880 F Mary 7065 0.07238359 m y 4 2 2 0.5000000

## 2 1880 F Anna 2604 0.02667896 a a 4 2 2 0.5000000

## 3 1880 F Emma 2003 0.02052149 e a 4 2 2 0.5000000

## 4 1880 F Elizabeth 1939 0.01986579 e h 9 4 5 0.4444444

## 5 1880 F Minnie 1746 0.01788843 m e 6 3 3 0.5000000

## 6 1880 F Margaret 1578 0.01616720 m t 8 3 5 0.3750000

## 7 1880 F Ida 1472 0.01508119 i a 3 2 1 0.6666667

## 8 1880 F Alice 1414 0.01448696 a e 5 3 2 0.6000000

## 9 1880 F Bertha 1320 0.01352390 b a 6 2 4 0.3333333

## 10 1880 F Sarah 1288 0.01319605 s h 5 2 3 0.4000000

## .. ... ... ... ... ... ... ... ... ... ... ...

## Variables not shown: vcsplit (fctr)

Bnames %>% group_by(year, sex) %>% ungroup()

## Source: local data frame [1,792,091 x 12]

##

## year sex name n prop first last length vowels consonants vowelFrac

## (dbl) (chr) (chr) (int) (dbl) (chr) (chr) (int) (int) (int) (dbl)

## 1 1880 F Mary 7065 0.07238359 m y 4 2 2 0.5000000

## 2 1880 F Anna 2604 0.02667896 a a 4 2 2 0.5000000

## 3 1880 F Emma 2003 0.02052149 e a 4 2 2 0.5000000

## 4 1880 F Elizabeth 1939 0.01986579 e h 9 4 5 0.4444444

## 5 1880 F Minnie 1746 0.01788843 m e 6 3 3 0.5000000

## 6 1880 F Margaret 1578 0.01616720 m t 8 3 5 0.3750000

## 7 1880 F Ida 1472 0.01508119 i a 3 2 1 0.6666667

## 8 1880 F Alice 1414 0.01448696 a e 5 3 2 0.6000000

## 9 1880 F Bertha 1320 0.01352390 b a 6 2 4 0.3333333

## 10 1880 F Sarah 1288 0.01319605 s h 5 2 3 0.4000000

## .. ... ... ... ... ... ... ... ... ... ... ...

## Variables not shown: vcsplit (fctr)

2. When computing means, if there are missing values, mean() will return NA unless you set na.rm=TRUE.
There are no missing values in this data set.
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summary(Bnames)

## year sex name n prop

## Min. :1880 Length:1792091 Length:1792091 Min. : 5.0 Min. :2.260e-06

## 1st Qu.:1948 Class :character Class :character 1st Qu.: 7.0 1st Qu.:3.930e-06

## Median :1981 Mode :character Mode :character Median : 12.0 Median :7.430e-06

## Mean :1972 Mean : 186.1 Mean :1.422e-04

## 3rd Qu.:2000 3rd Qu.: 32.0 3rd Qu.:2.366e-05

## Max. :2013 Max. :99674.0 Max. :8.155e-02

##

## first last length vowels consonants

## Length:1792091 Length:1792091 Min. : 2.000 Min. :0.000 Min. : 0.000

## Class :character Class :character 1st Qu.: 5.000 1st Qu.:2.000 1st Qu.: 3.000

## Mode :character Mode :character Median : 6.000 Median :3.000 Median : 3.000

## Mean : 6.174 Mean :2.802 Mean : 3.372

## 3rd Qu.: 7.000 3rd Qu.:3.000 3rd Qu.: 4.000

## Max. :15.000 Max. :8.000 Max. :11.000

##

## vowelFrac vcsplit

## Min. :0.0000 3:3 :283068

## 1st Qu.:0.4000 2:3 :221104

## Median :0.4444 3:4 :211776

## Mean :0.4580 2:4 :169867

## 3rd Qu.:0.5000 3:2 :138706

## Max. :1.0000 2:2 :119605

## (Other):647965

require(mosaic) # to get dfapply()

# dfapply() applies a function to selected variables in a data frame.

dfapply(Bnames, FUN=function(x) {sum(is.na(x))}, select=TRUE)

## $year

## [1] 0

##

## $sex

## [1] 0

##

## $name

## [1] 0

##

## $n

## [1] 0

##

## $prop

## [1] 0

##

## $first

## [1] 0

##

## $last
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## [1] 0

##

## $length

## [1] 0

##

## $vowels

## [1] 0

##

## $consonants

## [1] 0

##

## $vowelFrac

## [1] 0

##

## $vcsplit

## [1] 0

3. When computing the averages, we need to think about what we are averaging over. Do we want to
average over *names* or over *kids*? If the latter, we need to weight things by how many kids have
each name. (In either case, using this data we don’t have information about the really rare names.)
Notice that we have computed averages two ways above.

17.1 Split-apply-combine in Slow Motion

It can be instructive to look at the split-apply combine steps more carefully.

Split

Let choose just one year and one sex (2000, boy) and create the required subset manually.

Male2000 <- filter(Bnames, year==2000 & sex=="M")

head(Male2000,3)

## Source: local data frame [3 x 12]

##

## year sex name n prop first last length vowels consonants vowelFrac vcsplit

## (dbl) (chr) (chr) (int) (dbl) (chr) (chr) (int) (int) (int) (dbl) (fctr)

## 1 2000 M Jacob 34462 0.01651547 j b 5 2 3 0.4000000 2:3

## 2 2000 M Michael 32025 0.01534757 m l 7 3 4 0.4285714 3:4

## 3 2000 M Matthew 28566 0.01368989 m w 7 2 5 0.2857143 2:5

This is precisely what group_by() is doing with every combination of year and sex.

Apply

Now we can apply our function to one subset.
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Male2000 %>%

summarise(

max.prop = max(prop) ,

avg.length = mean(length)

)

## Source: local data frame [1 x 2]

##

## max.prop avg.length

## (dbl) (dbl)

## 1 0.01651547 6.123359

When chained with group_by() we can apply this function to each of the subsets in turn.

Combine

In the combine step, the results of applying a function to each of the subset data frames are combined
together into one data frame. If you are having trouble getting this process to do what you are expecting,
it can be helpful to create one subset and make sure that the function you apply to that one subset is
working the way you imagine. If it is, you should be ready to go. If not, it will be faster to debug it by
running it on just one subset until you get it right than to repeatedly try to run it on all subsets of a very
large data frame.

18 Reordering with arrange()

Sometimes we want the rows of our data frame to appear in a particular order. We can order the rows
according to any variable in the data frame. (Additional variables can be specified and used to break ties.)

t <- table(Bnames$vcsplit)

t[tail(order(t),5)] # 5 most common vowel/consonant splits

##

## 3:2 2:4 3:4 2:3 3:3

## 138706 169867 211776 221104 283068

Bnames %>%

mutate(vcsplit=interaction(vowels, consonants, sep=":", drop=TRUE)) %>%

group_by(vcsplit) %>%

summarise(n=n()) %>%

arrange( -n ) %>%

head(5)

## Source: local data frame [5 x 2]

##

## vcsplit n

## (fctr) (int)
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## 1 3:3 283068

## 2 2:3 221104

## 3 3:4 211776

## 4 2:4 169867

## 5 3:2 138706

The n() function in this example is special. It only works in the context of summarise() and returns
the number of rows in a subsetted data frame.

19 Plots

Once our new data frame has been created using these tools, we can use it for plotting just like we would
any other data frame. Here are plots showing the trends in name length and maximum proportion over
time.

ggplot(aes(year, avg.length, color=sex), data=BnameSummariesByYearAndSex) +

geom_point()

ggplot(aes(year, max.prop, color=sex), data=BnameSummariesByYearAndSex) +

geom_point()

ggplot(aes(year, vowelFrac, color=sex), data=BnameSummariesByYearAndSex) +

geom_point()

ggplot(aes(year, vowelFrac2, color=sex), data=BnameSummariesByYearAndSex) +

geom_point()

19.1 A trick for showing multiple plots together

Sometimes it is nice to place multiple plots together. One way to do this is to have each plot be a facet
of a larger plot. We create the faceting by adding a different value of some new variable (plot) in this
example to the data frame passed to each layer.
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ggplot(aes(colour=sex), data=BnameSummariesByYearAndSex) + # stuff common to all layers

geom_point(aes(x=year, y=avg.length),

data=mutate(BnameSummariesByYearAndSex, plot="ave. length")) +

geom_point(aes(x=year, y=max.prop),

data=mutate(BnameSummariesByYearAndSex, plot="max. proprtion")) +

geom_point(aes(x=year, y=vowelFrac),

data=mutate(BnameSummariesByYearAndSex, plot="vowel fraction (by name)")) +

geom_point(aes(x=year, y=vowelFrac2),

data=mutate(BnameSummariesByYearAndSex, plot="vowel fraction (by kid)")) +

facet_wrap(~plot, scale="free_y") +

labs(title="Several plots as facets", y="")

Earlier we saw that the number of girls names surpassing 1% popularity has been going down. Now we
see that the maximum proportion is also going down over time. This suggests that more and more names
are being used – driving down the proportions, including for the most popular names.

19.2 How many girls have popular names?

Now we can return to our question of how many girls have names shared with at least 1% of the girls born
in the same year they were born. We’ll call these popular names.

In the example below, we include ggplot() in our %>% chaining and then switch to using + to add
additional elements to the plot. This works because data is the first argument to ggplot().

require(scales) # for percent()

AtLeast1PercentGirls %>%

group_by(year) %>%

summarise(popular=sum(prop)) %>%

ggplot( aes(x=year, y=popular) ) +
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geom_line() +

scale_y_continuous(labels=percent)

As we see, since about 1950 it has become steadily less popular to give girls “popular” names.

19.3 group_by() and mutate()

We’ve been using group_by() with summarise(), but it can be used with other functions as well. In
particular, we can use it with mutate() to add new variables to a data frame that are computed relative
to its subsets. For example, lets compute the rank of each name, each year (separately for each sex) and
add that to the original data set.

Bnames %>%

group_by(year,sex) %>%

mutate(rank=rank(-prop)) ->

BnamesWithRanks

It’s a good idea to do a sanity check:

# make sure the relationship between prop and rank is monotonic -- at least for one year

qplot(x=prop, y=rank, data=filter(BnamesWithRanks, year==2000), colour=sex,

geom="line", log="xy" )

Now we can see how a name’s rank changes over time. Here are several ways to look at rank and/or
porportion of Johns over time.

BnamesWithRanks %>%

filter(sex=="M" & name=="John") %>%

ggplot(aes(x=year, y=prop)) +

geom_line()

BnamesWithRanks %>%
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filter(sex=="M" & name=="John") %>%

ggplot(aes(x=year, y=rank)) +

geom_line()

BnamesWithRanks %>%

filter(sex=="M" & name=="John") %>%

ggplot(aes(x=year, y=prop, colour=rank)) +

geom_line() +

guides(colour=guide_colourbar(reverse=TRUE))

BnamesWithRanks %>%

filter(sex=="M" & name=="John") %>%

ggplot(aes(x=year, y=rank, colour=prop)) +

geom_line(size=2) +

ylim(40,0)

Reversing the direction of the scale for rank makes it clearer that John is has been dropping from its
number 1 rank and is in danger of falling out of the top 30.

20 Using merge() to combine data frames

Sometimes data for individual observational units is located in multiple data frames and this data must
be brought together. The merge() function enables this. In the fastR package, the fusion1 data set
contains genotype information (for one SNP) from subjects in a genome-wide association study and the
pheno data set contains phenotype information for the same individuals.

require(fastR)

## Loading required package: fastR

##

## Attaching package: ’fastR’

##
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## The following object is masked from ’package:graphics’:

##

## panel.smooth

head(fusion1,3)

## id marker markerID allele1 allele2 genotype Adose Cdose Gdose Tdose

## 1 9735 RS12255372 1 3 3 GG 0 0 2 0

## 2 10158 RS12255372 1 3 3 GG 0 0 2 0

## 3 9380 RS12255372 1 3 4 GT 0 0 1 1

head(pheno,3)

## id t2d bmi sex age smoker chol waist weight height whr sbp dbp

## 1 1002 case 32.85994 F 70.76438 former 4.57 112.0 85.6 161.4 0.9867841 135 77

## 2 1009 case 27.39085 F 53.91896 never 7.32 93.5 77.4 168.1 0.9396985 158 88

## 3 1012 control 30.47048 M 53.86161 former 5.02 104.0 94.6 176.2 0.9327354 143 89

The id variable in each data frame contains an identifier that allows us to combine the data sets if we
want to compare genotype and phenotype information.

gwa <- merge(fusion1, pheno, by="id", all.x=FALSE, all.y=FALSE)

head(gwa,3)

## id marker markerID allele1 allele2 genotype Adose Cdose Gdose Tdose t2d bmi

## 1 1002 RS12255372 1 3 3 GG 0 0 2 0 case 32.85994

## 2 1009 RS12255372 1 3 3 GG 0 0 2 0 case 27.39085

## 3 1012 RS12255372 1 3 3 GG 0 0 2 0 control 30.47048

## sex age smoker chol waist weight height whr sbp dbp

## 1 F 70.76438 former 4.57 112.0 85.6 161.4 0.9867841 135 77

## 2 F 53.91896 never 7.32 93.5 77.4 168.1 0.9396985 158 88

## 3 M 53.86161 former 5.02 104.0 94.6 176.2 0.9327354 143 89

The arguments all.x=FALSE and all.y=FALSE instruct R to maintain a record only for individuals that
appear in both data sets. Setting one or both of these to TRUE would include individuals with information
in one file but not the other (and fill in with NA where information is missing from the other data set). If
the identifying variable has a different name in each data frame, then by.x and by.y can be used to give
the separate names for each.

Now we can see how various phenotypes might differ by sex and genotype.

ggplot(aes(x=genotype, y=whr), data=gwa, groups=genotype) +

geom_boxplot() + facet_grid( ~ sex )

## Warning: Removed 79 rows containing non-finite values (stat_boxplot).
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We can check on those warning messages with one of the following, which show that our warning
messages are due to individuals who did not have recorded whr values in our data set.

gwa %>%

group_by(sex) %>%

summarise(missing.whr=sum(is.na(whr)))

## Source: local data frame [2 x 2]

##

## sex missing.whr

## (fctr) (int)

## 1 F 45

## 2 M 34

It is also possible to apply arbitrary functions to each subsetted data frame using do(). The only
restriction is that the results for each subset must be compatible data frames.

gwa %>%

group_by(sex) %>%

dplyr::do( favstats(~whr, data=.) ) # . is placehoder for subsetted data frame

## Source: local data frame [2 x 10]

## Groups: sex [2]

##

## sex min Q1 median Q3 max mean sd n missing

## (fctr) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (int) (int)

## 1 F 0.6728972 0.8140496 0.8600000 0.910000 1.210000 0.8642272 0.07095933 1061 45

## 2 M 0.7918782 0.9366185 0.9769585 1.020204 1.242424 0.9800165 0.06341068 1191 34

In this particular case, favstats() would have been capable of producing the same summary in another
(and simpler) way:

favstats( whr ~ sex, data=gwa )

## sex min Q1 median Q3 max mean sd n missing

## 1 F 0.6728972 0.8140496 0.8600000 0.910000 1.210000 0.8642272 0.07095933 1061 45

## 2 M 0.7918782 0.9366185 0.9769585 1.020204 1.242424 0.9800165 0.06341068 1191 34

c©2013–15 • Randall Pruim



ggplot2 @ statistics.com Week 3 Dope Sheet Page 61

The following table shows that the risk for type 2 diabetes appears to be higher for individuals with
more copies of the T allele at this marker:

gwa2 <-

gwa %>%

group_by(sex,genotype) %>%

summarise( diabetic = sum(t2d=="case"),

nondiabetic=sum(t2d=="control"),

prop.diabetic = diabetic / (diabetic + nondiabetic) )

gwa2

## Source: local data frame [6 x 5]

## Groups: sex [?]

##

## sex genotype diabetic nondiabetic prop.diabetic

## (fctr) (fctr) (int) (int) (dbl)

## 1 F GG 314 419 0.4283765

## 2 F GT 174 165 0.5132743

## 3 F TT 19 15 0.5588235

## 4 M GG 423 416 0.5041716

## 5 M GT 201 144 0.5826087

## 6 M TT 29 12 0.7073171

ggplot(data=gwa, aes(x=genotype, fill=t2d)) +

geom_bar(position="dodge") + facet_grid(~sex)

ggplot(data=gwa2, aes(x=genotype, y=prop.diabetic, color=sex)) +

geom_point(size=3) +

geom_line(aes(group=sex))

21 Converting Between Wide and Long Formats

Often it is useful to convert data between “wide” and “long” formats. For example, for names that are
given to both sexes, we might prefer to have a wider format with a single line for each year listing both
proportions instead of longer format that has a separate row for males and females (for each name and each
year). We can use spread() to make the format wider and gather() to make it longer. Both functions
are in the tidyr package.
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require(tidyr)

## Loading required package: tidyr

Bnames2 <-

Bnames %>%

select(year, name, sex, prop) %>%

group_by(year, name) %>%

spread(key = sex, value=prop)

head(Bnames2)

## Source: local data frame [6 x 4]

##

## year name F M

## (dbl) (chr) (dbl) (dbl)

## 1 1880 Aaron NA 8.614865e-04

## 2 1880 Ab NA 4.222973e-05

## 3 1880 Abbie 7.274218e-04 NA

## 4 1880 Abbott NA 4.222973e-05

## 5 1880 Abby 6.147226e-05 NA

## 6 1880 Abe NA 4.222973e-04

Alternatively, we can gather variables into key-value pairs with gather().

Bnames3 <-

Bnames2 %>%

gather(key=sex, value=prop, M, F)

head(Bnames3)

## Source: local data frame [6 x 4]

##

## year name sex prop

## (dbl) (chr) (fctr) (dbl)

## 1 1880 Aaron M 8.614865e-04

## 2 1880 Ab M 4.222973e-05

## 3 1880 Abbie M NA

## 4 1880 Abbott M 4.222973e-05

## 5 1880 Abby M NA

## 6 1880 Abe M 4.222973e-04

Notice that Bnames3 is not quite the same as Bnames. First, we have dropped some columns to focus
our attention. Second, there are now rows for name/year combinations for which there are no children.
This is because the NA’s created with spread() are retained when we gather(). This sort of spreading
and regathering is sometimes useful when one wants to make missing data explicit rather than implicit.
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22 Other Examples

22.1 Under-reporting

The (Bnames) data comes from the US Social Security records. Two other data sets in the babynames

package contain data from other sources: applicants contains information on number of social security
applicants, and births has the total number of births each year according to the US Census Bureau
(rounded to the nearest 1000). It is interesting to compare these different estimates of the number of
children born each year.

BabiesPerYear <- Bnames %>%

group_by(year) %>%

summarise(n=sum(n)) %>%

merge(births, by="year", all=TRUE) %>%

merge(applicants %>% group_by(year) %>% summarise(applicants=sum(applicants)),

by="year", all=TRUE)

BabiesPerYear %>% head

## year n births applicants

## 1 1880 201484 NA 216005

## 2 1881 192700 NA 207142

## 3 1882 221537 NA 237730

## 4 1883 216952 NA 232546

## 5 1884 243468 NA 260330

## 6 1885 240856 NA 257898

ggplot(aes(x=year), data=BabiesPerYear) +

geom_line(aes(y=n, color="names")) +

geom_line(aes(y=applicants, color="SS applicants")) +

geom_line(aes(y=births, color="census"))

## Warning: Removed 30 rows containing missing values (geom_path).

We can see that early on it appears that many children were not registered with the SSA. After about
1950, the census numbers and SSA numbers track together. Prior to that, it appears that quite a few
people didn’t obtain a social security number. More recently the gap between the number of babies in
names and applicants has been growing – presumably because a larger fraction of children have names
given to fewer than 5 children the year they were born.

22.2 Issues with names

One difficulty in analysing baby names is that there are many spellings for some names and many names
that are quite similar.
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Bnames %>%

filter( subword(name,1,3) == "ann" ) %>%

group_by(name,sex) %>%

summarise(n = sum(n)) %>%

arrange(-n)

## Source: local data frame [312 x 3]

## Groups: name [303]

##

## name sex n

## (chr) (chr) (int)

## 1 Ann F 467213

## 2 Ann M 1365

## 3 Anna F 868027

## 4 Anna M 2722

## 5 Annaalicia F 25

## 6 Annabel F 11694

## 7 Annabela F 6

## 8 Annabele F 6

## 9 Annabell F 5798

## 10 Annabella F 9157

## .. ... ... ...

One solution to this is to group names, for example by some prefix. Here we create a function that shows
the popularity of all names with a specified prefix.13 Creating functions that make it easy to create many
similar plots is a good illustration of the DRY pinciple (Don’t Repeat Yourself) and is much better coding
practice than copying and pasting code several time and making light edits in each one. In particular, this
makes it much easier to make uniform changes across a sequence of similar plots.

beginningNamesPlot <- function( data, prefix, legend=FALSE ) {
Names <- data %>%

filter( subword(name, 1, nchar(prefix) ) == tolower(prefix) ) %>%

group_by(year, name, sex) %>%

summarise( prop=sum(prop) )

numNames <- length(unique(Names$name))

qplot(year, prop, fill=name, colour=I("transparent"),

data=Names, geom="area", stat="identity") +

scale_y_continuous(labels=percent) +

scale_fill_manual(values=rep(brewer_pal(pal="Blues")(8),ceiling(numNames/8))) +

facet_grid(sex~.) +

labs(title=paste("Popularity of names beginning", prefix)) +

guides(fill=legend)

}

13These plots would be even nicer if we gussied them up with a little bit of interactivity so that mousing over the regions will reveal
the particular name represented. See gridSVG and SVGAnnotation for two packages that provide the capability to create such plots.
Also, ggvis is now available and makes creating interactive plots much easier for people who know ggplot2 since it is being designed
and written by Hadley Wickham using basically the same grammar of graphics approach (but with syntax more like dplyr). But even
as static plots, these are quite nice.
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From the plots below we can see the rise and fall of names beginning ‘An’ and ‘Ed’. We can also see
that the mix of names beginning ‘An’ has changed some over time.

beginningNamesPlot(Bnames, "An")

## Warning: ‘stat‘ is deprecated

beginningNamesPlot(Bnames, "Ed")

## Warning: ‘stat‘ is deprecated

22.3 A ggvis example

Here is an example of a plot using ggvis to provide tooltips. More work is required to compute the
stacking manually, faceting is not supported yet, and the syntax is a bit different, but otherwise, the basic
approach is the same as was used with ggplot2. This plot cannot be displayed in a PDF document, but
it should be executable in an RStudio console.

require(ggvis)

display_name <- function(x) {
if(is.null(x)) return(NULL)

# paste0(names(x), ": ", format(x, digits=4), collapse = "<br />")

paste0("<i>", x$name, "</i>")

}

beginningNamesPlot2 <- function( data, prefix, sexes="M", legend=FALSE ) {
Names <- data %>%

filter(

c©2013–15 • Randall Pruim



ggplot2 @ statistics.com Week 4 Dope Sheet Page 66

subword(name, 1, nchar(prefix) ) == tolower(prefix) &

sex %in% sexes ) %>%

group_by(year, name, sex) %>%

summarise( prop=sum(prop) )

numNames <- length(unique(Names$name))

Names %>%

group_by(year) %>%

arrange(name) %>%

mutate(to = cumsum(prop), from = c(0, to[-n()])) %>%

ggvis(x = ~year, y = ~from, y2 = ~to, fill=~name) %>%

group_by(name) %>%

layer_ribbons() %>%

hide_legend("fill") %>%

add_tooltip(display_name)

}
beginningNamesPlot2(Bnames, "Ann", "F")

dope , n. information especially from a reliable source [the inside dope]; v. figure out –
usually used with out; adj. excellent14

This week’s dope

This we will learn how to polish plots by

1. Customizing axis labels and plot titles

2. Customizing plots with themes and theme elements

3. Selecting specific mappings of colors, shapes, line types, etc. to aesthetics.

This Dope Sheet includes terse descriptions and examples of the main things covered this week. See
the other course materials and the ggplot2 book for more complete descriptions and additional examples.
But note that there have been a number of changes to ggplot2 since the book was published that affect
themes and plot customization work. Some of these changes are discussed at https://github.com/wch/

ggplot2/wiki/New-theme-system.

23 Modifying guides using labs()

Perhaps the most common change you will want to make to an individual plot is changing the plot title and
default labeling of the guides (the collective term for axes and legends or keys used for other aesthetics).
These can be changed using labs().

14definitions selected from Webster’s online dictionary
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p <- qplot( cty, hwy, color=class, size=factor(cyl), data=mpg, alpha=I(.3) )

p

q <- p + labs(title="Mileage for popular models of cars",

x = "city fuel economy (mpg)", y = "hiway fuel economy (mpg)",

color = "Class of car", size = "No. of cylinders")

q

24 Selecting a theme

Themes affect the way various plot elements look. Using themese to control these elements makes it
easier to acheive a consistent look across multiple plots. The default theme is produced by theme_gray();
theme_bw() and theme_minimal() produce alternative themes; and the ggthemes packages contains a
number of other themes.

A theme is really just a list of settings.

theme_gray

## function (base_size = 11, base_family = "")

## {

## half_line <- base_size/2

## theme(line = element_line(colour = "black", size = 0.5, linetype = 1,

## lineend = "butt"), rect = element_rect(fill = "white",

## colour = "black", size = 0.5, linetype = 1), text = element_text(family = base_family,

## face = "plain", colour = "black", size = base_size, lineheight = 0.9,

## hjust = 0.5, vjust = 0.5, angle = 0, margin = margin(),

## debug = FALSE), axis.line = element_blank(), axis.text = element_text(size = rel(0.8),

## colour = "grey30"), axis.text.x = element_text(margin = margin(t = 0.8 *

## half_line/2), vjust = 1), axis.text.y = element_text(margin = margin(r = 0.8 *

## half_line/2), hjust = 1), axis.ticks = element_line(colour = "grey20"),

## axis.ticks.length = unit(half_line/2, "pt"), axis.title.x = element_text(margin = margin(t = 0.8 *

## half_line, b = 0.8 * half_line/2)), axis.title.y = element_text(angle = 90,

## margin = margin(r = 0.8 * half_line, l = 0.8 * half_line/2),

## ), legend.background = element_rect(colour = NA),

## legend.margin = unit(0.2, "cm"), legend.key = element_rect(fill = "grey95",

## colour = "white"), legend.key.size = unit(1.2, "lines"),

## legend.key.height = NULL, legend.key.width = NULL, legend.text = element_text(size = rel(0.8)),

## legend.text.align = NULL, legend.title = element_text(hjust = 0),

## legend.title.align = NULL, legend.position = "right",

## legend.direction = NULL, legend.justification = "center",

## legend.box = NULL, panel.background = element_rect(fill = "grey92",
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## colour = NA), panel.border = element_blank(), panel.grid.major = element_line(colour = "white"),

## panel.grid.minor = element_line(colour = "white", size = 0.25),

## panel.margin = unit(half_line, "pt"), panel.margin.x = NULL,

## panel.margin.y = NULL, panel.ontop = FALSE, strip.background = element_rect(fill = "grey85",

## colour = NA), strip.text = element_text(colour = "grey10",

## size = rel(0.8)), strip.text.x = element_text(margin = margin(t = half_line,

## b = half_line)), strip.text.y = element_text(angle = -90,

## margin = margin(l = half_line, r = half_line)), strip.switch.pad.grid = unit(0.1,

## "cm"), strip.switch.pad.wrap = unit(0.1, "cm"), plot.background = element_rect(colour = "white"),

## plot.title = element_text(size = rel(1.2), margin = margin(b = half_line *

## 1.2)), plot.margin = margin(half_line, half_line,

## half_line, half_line), complete = TRUE)

## }

## <environment: namespace:ggplot2>

You can create your own theme by defining a similar sort of function with your favorite settings. The
ggthemes package contains several additional themes, each intended to mimic the look of the plots from
some other context (Excel, the economist, etc.)

require(ggthemes)

## Loading required package: ggthemes

## Warning: replacing previous import by ’grid::arrow’ when loading ’ggthemes’

## Warning: replacing previous import by ’grid::unit’ when loading ’ggthemes’

## Warning: replacing previous import by ’scales::alpha’ when loading ’ggthemes’

##

## Attaching package: ’ggthemes’

##

## The following object is masked from ’package:mosaic’:

##

## theme_map

q + theme_excel()

q + theme_economist()

## Warning: ‘axis.ticks.margin‘ is deprecated. Please set ‘margin‘ property of ‘axis.text‘ instead

## Error in FUN(X[[i]], ...): Theme element ’text’ has NULL property: margin, debug

The themes in ggplot2 take two arguments that control the size of the fonts and the font family used.
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q + theme_gray(base_size=14, base_family="serif")

q + theme_gray(base_size=10, base_family="Times")

The default theme can be set using theme_set(), which returns the previous theme, in case you want
to revert back to it later.

old_theme <- theme_set(theme_minimal())

q

theme_set( old_theme )

q

25 Modifying theme elements

In addition to selecting a complete theme, ggplot2 allows you to set individual theme elements either for
individual plots or to modify a complete theme. For example, to turn off the labeling of the x axis, we set
axis.text.x, axis.title.x, and optionaxis.ticks.x each to element_blank().

q

q + theme( axis.text.x = element_blank(),

axis.title.x = element_blank(),

axis.ticks.x = element_blank()

)
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Alternatively, we might like to change the style of the axis labeling using element_text() and element_-
line(). In the example below different colors are used to make it clear which element is which.

q

q + theme( axis.text.x = element_text(colour=red, size=14, face=italic),

axis.title.x = element_text(colour=navy, size=16, face=bold, family=serif),

axis.ticks.x = element_line(colour=orange, size=1)

)

Changes to theme elements can be used to update the current default theme using theme_update().

theme_update( axis.text.x = element_text(colour=red, size=14, face=italic),

axis.title.x = element_text(colour=navy, size=16, face=bold, family=serif),

axis.ticks.x = element_line(colour=orange, size=1)

)

p

q

In addition to element_blank(), element_line(), and element_text(), there is also element_rect()
for setting features of rectangular elements (like the plot background).
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apropos("element_")

## [1] "element_blank" "element_grob" "element_line" "element_rect" "element_text"

The documentation for these functions gives a complete list of their arguments.

25.1 Taking advantage of the hiearchy

The hierarchy of theme element names is illustrated in this graph. (The R code that generates this graph
can be found at https://github.com/wch/ggplot2/wiki/New-theme-system.)

Elements with longer names inherit from elements with shorter (substring) names. This allows us to
make many changes with a small amount of code. For example, if we wanted to make all of the text in
our plot orange, we could set the colour attribute of the text element of our theme.

q

q + theme( text=element_text(colour="orange") )
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To understand why this first attempt didn’t quite work, we need to look a little more closely at themes
and inheritance.

current_theme <- theme_update() # dont make any changes, just store the current theme

current_theme$axis.text.x

## List of 10

## $ family : NULL

## $ face : chr "italic"

## $ colour : chr "red"

## $ size : num 14

## $ hjust : NULL

## $ vjust : NULL

## $ angle : NULL

## $ lineheight: NULL

## $ margin : NULL

## $ debug : NULL

## - attr(*, "class")= chr [1:2] "element_text" "element"

The reason that axis.text.x didn’t inherit orange from text is that the colour had already been
changed from NULL (meaning inherit from parent elements) to "red". Inheritance only occurs where there
is a NULL. The following gets us a little closer.

q + theme_gray()

q + theme_gray() + theme( text=element_text(colour="orange") )

All the text is orange now except for axis.text. Inspecting theme_gray() shows us why.

theme_gray()$text$colour
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## [1] "black"

theme_gray()$axis.text$colour

## [1] "grey30"

theme_gray()$axis.text.x$colour

## NULL

theme_gray()$axis.title$colour

## NULL

theme_gray()$axis.title.x$colour

## NULL

In the theme_gray() theme, the colour in axis.title is NULL but in axis.text it is "gray50". So if
we start from theme_gray(), we either need to first change axis.text$color to NULL or we need to set
axis.text$color explicitly.

q + theme_gray() +

theme( text=element_text(colour="orange"), axis.text=element_text(colour="orange") )

If inheritance doesn’t work as you expect, inspecting the theme you are modifying will usually reveal
what is blocking the inheritance. Just remember that an element inherits from its parent if its value is
NULL, but not if the value is anything else.

25.2 Saving your theme

If you want to apply a theme to several plots, it is best to save the theme.
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require(scales) # to get the alpha() function

theme_orange <- theme_gray() +

theme(text=element_text(colour="orange"),

axis.text=element_text(colour="orange"),

panel.grid.major=element_line(colour="orange"),

panel.grid.minor=element_line(colour="orange"),

plot.background=element_rect(colour=alpha("orange",0.2)),

panel.background=element_rect(fill=alpha("orange",0.2)))

The resulting theme can then be applied as the new default theme, or it can be added to individual
plots.

q + theme_orange

26 Controlling how aesthetics are mapped

Unlike lattice, ggplot2 does not include the color schemes, line widths and types, plot symbols, etc. in
its themes. These are set by choosing the appropriate scales for the aesthetics as we saw in Lesson 2.

theme_set(theme_gray())

p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species))

p2 + geom_point() + scale_color_manual(values = c("orange", "purple", "skyblue"))

p2 + geom_point(size = 5, alpha = 0.5) + scale_color_brewer(type = "qual",

palette = 1, name = "iris species")

There is no mechanism in ggplot2 for setting default scales as part of a theme, but the scales can be
saved for easier reuse in multiple plots.
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my_color_scale <- scale_color_brewer(type = "qual", palette = 1, name = "iris species")

q + my_color_scale

p2 + geom_point() + my_color_scale

27 Annotation

ggplot2 provides some additional utilities for adding small amounts of additional information to a plot.
Like many other ggplot2 functions we have seen, annotate() adds a layer to the plot. Its first argument
is a geom. Unlike the other ggplot2 functions, the annotate() function does not require that data be in
a data frame, since for adding small amounts of inforamation, it is often easier to work with vectors.

q + annotate("text", x=10, y=40, label="We can add some text", hjust=0) +

annotate("rect", xmin=20, ymin=15, xmax=30, ymax=20, fill=alpha("navy",.2)) +

annotate("text", x=25, y=17.5, label="or a rectangle")

Inset plots can be added using annotation_custom().

inset <- ggplot(aes(cty), data=mpg) + stat_density() + theme_bw(6)

insetG <- ggplotGrob(inset)

q + annotation_custom( insetG, xmin=22, xmax=35, ymin=12, ymax=25)

c©2013 • Randall Pruim



ggplot2 @ statistics.com Week 4 Dope Sheet Page 76

There is also an annotation_raster() function for placing raster graphics onto a plot.
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