
ggplot2 @ statistics.com Week 1 Dope Sheet Page 1

dope , n. information especially from a reliable source [the inside dope]; v. figure out –
usually used with out; adj. excellent1

This week’s dope

This we will learn how to

1. Describe plots using the grammar of graphics

2. Make basic plots using ggplot() and qplot()

3. Use aesthetics to enhance plots

4. Use non-default geoms and stats to increase the palette of plots available

5. Use faceting to create sub-plots

This Dope Sheet includes terse descriptions and examples of the main things covered this week. See
the other course materials and the ggplot2 book for more complete descriptions and additional examples.
But note that there have been some changes to ggplot2 since the book was published, so some of the code
used in the book is no longer consistent with the current version of the package.

0 Preliminaries

0.1 Resources

In addition to these Dope Sheets, here are some other useful resources you may wish to consult as you
learn ggplot2.

• The disucssion forums at http://statistics.com.

Take advantage of the discussion forums that will be set up for each week of the course. This is a
place where you can ask individual questions and share your experience with ggplot2.

• The R Graphics Cookbook by Winston Chang

Hadley Wickham’s description: “[This book] provides a set of recipes to solve common graphics
problems. Read this book if you want to start making standard graphics with ggplot2 as quickly as
possible.”

There are a few examples done using lattice, too.

• ggplot2: Elegant Graphics for Data Analysis by Hadley Wickham

Hadley Wickahm’s description: “[This book] describes the theoretical underpinnings of ggplot2 and
shows you how all the pieces fit together. This book helps you understand the theory that underpins
ggplot2, and will help you create new types of graphic specifically tailored to your needs. You can
read sample chapters and download the book code from the book website.”

Once caveat: This book is now a bit out of date and is not completely consistent with the newest
versions of ggplot2. I’ll try to point out some of the differences in the relevant sections of the course
to avoid confusion.

1definitions selected from Webster’s online dictionary

c©2013–15 • Randall Pruim

http://statistics.com
http://ggplot2.org/
http://ggplot2.org/

ggplot2 @ statistics.com Week 1 Dope Sheet Page 2

• http://docs.ggplot2.org/

This site has some nicely formatted documentation for each component in the ggplot2 system.
Thumbnail images can help you locate the right thing, and the examples include plots (unlike the
documentation within R) so you can quickly scan to find an example that matches your needs.

0.2 R and RStudio

I strongly recommend that you use

• an up-to-date version of R

Some of our examples may require R 3.1 or later. It is a good idea to update your R packages as
well. (You can use update.packages() to automate the process.)

• an up-to-date version of RStudio

If you have never used RStudio before, you can learn RStudio as bonus material for this course.
RStudio is an integrated development environment (IDE) for R that runs on Windows, Mac, and
Linux. (It can even be run in a browser if you have access to an RStudio server). It simplifies
the creation and management of files, and generally organizes your work in R much better than the
various alternatives. I’ve been using it for 4 or 5 years now and can’t imagine going back to use other
interfaces.

• RMarkdown

RMarkdown provides an easy way to create documents that include text, R code, R output, and
graphics. RMarkdown is a simple mark-up language that can be used to generate HTML, PDF, or
Word documents in a reproducible workflow. RStudio makes it very easy to work with RMarkdown.
RMarkdown provides the easiest way to do your assignments for this course, but its uses extend well
beyond this and should be a part of every R users workflow.

Notes: To create PDF documents, you must have LATEX installed on your computer. For LATEX
users among you, there is also a way to mix R with LATEX to give you more control over the output
formatting. That’s how these notes were created.

0.3 Packages and Data

We will be using the ggplot2 and dplyr packages throughout this class, so we should get in the habit of
making sure they are loaded before we do anything else.2 In addition, for these examples, we will use some
data from the mosaicData package.

require(mosaicData)

require(ggplot2)

require(dplyr)

Additional packages will be introduced as needed. All of the packages used in this course can be installed
via CRAN. RStudio provides a simple interface for doing this, but you can do it manually as well using,
for example

2If you are using RMarkdown, remember that packages must be loaded in each RMarkdown file since the RMarkdown files do not
have access to the console environment.

c©2013–15 • Randall Pruim

http://docs.ggplot2.org/
cran.us.r-project.org
http://rstudio.com
https://support.rstudio.com/hc/en-us/articles/200552086-Using-R-Markdown

ggplot2 @ statistics.com Week 1 Dope Sheet Page 3

install.packages("mosaic")

Here are the first few lines of a data set we will use for illustrative purposes.

head(HELPrct, 3)

age anysubstatus anysub cesd d1 daysanysub dayslink drugrisk e2b female sex g1b homeless

1 37 1 yes 49 3 177 225 0 NA 0 male yes housed

2 37 1 yes 30 22 2 NA 0 NA 0 male yes homeless

3 26 1 yes 39 0 3 365 20 NA 0 male no housed

i1 i2 id indtot linkstatus link mcs pcs pss_fr racegrp satreat sexrisk substance treat

1 13 26 1 39 1 yes 25.112 58.41 0 black no 4 cocaine yes

2 56 62 2 43 NA <NA> 26.670 36.04 1 white no 7 alcohol yes

3 0 0 3 41 0 no 6.763 74.81 13 black no 2 heroin no

Use

?HELPrct

to find out more about this data set. Some of the variables have pretty opaque names. Let’s rename two
variables to give better names for the average and maximum number of drinks per day over the 30 days
prior to admission for substance abuse.

HELPrct <- rename(HELPrct, aveDrinks = i1, maxDrinks = i2)

head(HELPrct, 2)

age anysubstatus anysub cesd d1 daysanysub dayslink drugrisk e2b female sex g1b homeless

1 37 1 yes 49 3 177 225 0 NA 0 male yes housed

2 37 1 yes 30 22 2 NA 0 NA 0 male yes homeless

aveDrinks maxDrinks id indtot linkstatus link mcs pcs pss_fr racegrp satreat sexrisk

1 13 26 1 39 1 yes 25.11 58.41 0 black no 4

2 56 62 2 43 NA <NA> 26.67 36.04 1 white no 7

substance treat

1 cocaine yes

2 alcohol yes

The rename() function creates a new data frame with some of the variables renamed. By assigning
this new data frame to HELPrct, we have essentially updated HELPrct with different names for two of the
variables. (As an alternative, we could have chosen to add two new variables without losing the original
ones. The mutate() function can be used for this.)

We will also use the Births78 data set.

head(Births78)

date births dayofyear

1 1978-01-01 7701 1

2 1978-01-02 7527 2

3 1978-01-03 8825 3

4 1978-01-04 8859 4

5 1978-01-05 9043 5

6 1978-01-06 9208 6

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 4

This data set records the number of live births in the United States for each day of 1978. If we ever
modify a data set from a package and need to restore the original version of the data, we can use

data(HELPrct) # (re)load the data from the package

data(Births78)

1 The Grammar of Graphics

ggplot2 is based on (but also different from) a grammar of graphics described in The Grammar of
Graphics by Wilkenson et al. The ggplot2 approach is to build up layered graphics by describing the
elements of the graph in a structured way. It helps to begin with a bit of the vocabulary of the ggplot2

grammar:

geom the geometric “shape” used to display data (other terminology: glyph, mark)

• bar, point, line, ribbon, text, etc.

aesthetic an attribute controlling how geom is displayed (other terminology: property)

• x position, y position, color, fill, shape, size, etc.

coordinate system (a.k.a. coord) Among the aesthetics, the x and y positions are special and get
mapped to positions on the graphics device (e.g., computer screen, pieces of paper, etc.) using a
coordinate system (other terminology: frame).

• x position, y position

statistic (a.k.a., stat) a transformation applied to data before a geom gets it

• example: histograms and bar charts are created from binned data rather than the original data

mapping the matching up of aesthetics with variables so that different values of a variable are represented
by different values of the aesthetic.

scale conversion of raw data to visual display

• particular assignment of colors, shapes, sizes, etc.

guide helps user convert visual data back into raw data

• legends, axes

annotation additional labeling (titles, arrows, etc.) can sometimes make the plot easier to read.

c©2013–15 • Randall Pruim

http://www.amazon.com/Grammar-Graphics-Statistics-Computing/dp/0387245448
http://www.amazon.com/Grammar-Graphics-Statistics-Computing/dp/0387245448

ggplot2 @ statistics.com Week 1 Dope Sheet Page 5

1.1 Describing a plot

One key to successfully creating plots with ggplot2 is learning to describe plots using the grammar outlined
above. For example, consider the following plot.

7000

8000

9000

10000

Jan 1978 Apr 1978 Jul 1978 Oct 1978 Jan 1979
date

bi
rt

hs

• coordinate system: The frame is determined by mapping date to the x-axis and births to the
y-axis in the usual Cartesian coordinate system. (Note: ggplot2 is date aware and does the right
thing with the dates on the x-axis.)

• geoms: Each row of our Births78 data frame is represented by a point on the plot.

• other aesthetics: In this example no other variables are being mapped to aesthetics – all the dots
are set to the same shape, size, color, transparency, etc.

• statistic: In this example (and in many others) the identity statistic is being used – the data are
being mapped directly to positions on the plot without an additional transformation.

• guides: The only aesthetics being mapped are x and y. The axes on the plot serve as the guides that
help us do the reverse mapping from a position on the plot onto values that occur in the data.

1.2 Describing another plot

We might conjecture that the reason for the two parallel waves is that fewer children were born on weekends.
By mapping color to the day of the week, we can test whether our conjecture seems correct.

7000

8000

9000

10000

Jan 1978 Apr 1978 Jul 1978 Oct 1978 Jan 1979
date

bi
rt

hs

day

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

Compared to the previous plot, the following things have changed:

• The geom has changed from points to lines. (This makes it easier to detect days that are “out of
place” relative to the overall pattern.)

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 6

• We are now mapping the day of the week to the color aesthetic.

• An additional guide has beeen added to show which days are mapped to which colors. (The mapping
takes days to colors for displaying and the guide helps us go from colors to days for interpreting the
result.)

The result is a plot that confirms our suspiscion. With only a few exceptions, the days in the lower wave
are weekends and the days in the upper wave are weekdays. (The exceptions are readily seen to coincide
with major US holidays.)

In the next section we will begin learning how to describe the elements of plots such as these in a
language that ggplot2 understands. But the first step to creating plots in ggplot2 is identifying its key
components as outlined above. This is different from some other graphics systems, like lattice, where one
begins by identifying the type of high level plot (histogram, bar chart, scatter plot, etc.) that one wants.
This makes ggplot2 more expressive and flexible, but can make getting started a bit more complicated.3

1.3 One more example

Now let’s consider a more complicated example. This one comes from the New York Times.

• The frame for this graphic is produced by mapping the average score on a mathematics test to the
y-axis and the difference in performance for boys and girls on the x-axis.

3ggplot2 does provide a qplot() function that makes it easier to create several simple plots. We opted to delay introducing qplot()

to make sure we understand the ggplot2 system first.

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 7

• The guide for the y-axis is located in the center of the plot rather than on an edge. The guide for
the x-axis is in the usual place.

• Each country is represented by a point. The region of the world is mapped to one of three fills. (In
ggplot2 color usually refers to the outer color and fill to the internal color.)

• A guide for the mapping of region to fill is in the lower left corner.

• The color of each dot is set to black.

• Some additional text annotations have been added to indicate which dot represents the United
States, to add an alternative guide for the x-axis (at the top of the plot), and to add some additional
contextual information.

• Finally, the left and right halves of this plot are different colors. This could be done by placing
semi-transparent rectangle geom over a portion of the plot.

Once you can look at a plot and identify it componenents like this, it will become relatively straightfor-
ward to recreate the plot using ggplot2 – we just need to learn the particulars of how we communicate the
grammar of graphics to R. If you want some additional exercises, take a look at the idata visulizations of
the New York Times and see if you can describe them using the vocabulary of this grammar of graphics.

2 Describing Plots with ggplot()

2.1 Data and aesthetics

All plots begin with data. For ggplot2, the data must usually be in a data frame. If you have data in
other forms, the first thing you must do is create a data frame containing your data.4

Our first decisions when making a plot are generally to identify the data we want to plot and to define
the appropriate aesthetics. Aesthetics tell ggplot2 how to map variables in the data onto position (x and
y), color, size, transparency, etc. when they are plotted.5

ggplot(Births78, aes(x=date, y=births))

Error: No layers in plot

This alone doesn’t show any plot, however, because ggplot() does not know about any default geoms
or stats, so it doesn’t know what marks to put at each x and y location until we add that information to
our plot object.

2.2 Layers, geoms, and stats

Each layer of a ggplot2 plot requires data, aesthetics, a geom, and a a stat. To get a plot, we need to add
information about our desired geom and stat for each layer:

4Often, the largest part of the taks of creating a plot is getting the data into the correct shape. We’ll talk more about how to do
that in Week 3.

5The situation is actually a little bit more complicated. The mapping establishes the link between the data and an aesthetic, but a
scale determines precisely which values of the data are mapped to which aesthetic values. For now, we will use the default scales, but
eventually we will want to know how to have more control by determining the scales ourselves.

c©2013–15 • Randall Pruim

http://www.nytimes.com/newsgraphics/2013/12/30/year-in-interactive-storytelling/#dataviz

ggplot2 @ statistics.com Week 1 Dope Sheet Page 8

We will learn an easier way to do this in just a moment.

ggplot(data=Births78, aes(x=date, y=births)) +

layer(geom="point", stat="identity")

7000

8000

9000

10000

Jan 1978 Apr 1978 Jul 1978 Oct 1978 Jan 1979
date

bi
rt

hs

Since each geom comes with a default stat and each stat with a default geom, it suffices to supply only
one of these (provided we are happy with the default value for the other). The functions beginning geom_

and stat_ are short cuts that create layers in a way that is less verbose, so in practice, we will essentially
never use the layer() function. Instead we will do something like

ggplot(Births78, aes(x=date, y=births)) +

geom_point() # stat_identity is the default

7000

8000

9000

10000

Jan 1978 Apr 1978 Jul 1978 Oct 1978 Jan 1979
date

bi
rt

hs

2.3 Aesthetics: mapping and setting

We can make this a bit fancier by setting some of the aesthetics for the points on our plot.

shape = 21 is a circle with separate color and fill aesthetics.

ggplot(Births78, aes(x=date, y=births)) +

geom_point(color="navy", fill="skyblue", shape=21)

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 9

7000

8000

9000

10000

Jan 1978 Apr 1978 Jul 1978 Oct 1978 Jan 1979
date

bi
rt

hs

Our use of color, fill, and shape here do not code any additional information. We have simply set them to
different values to change the overall look of the plot.

If we want the fill to show the days of the week, we must use mapping rather than setting. To make
things easier, let’s add a variable to our data that stores the day of the week. The wday() function from
the lubridate package will do the computation of weekday from date and mutate() creates a new data
frame that includes the additional variable.

require(lubridate)

Births78 <- mutate(Births78, day=wday(date, label=TRUE, abbr=TRUE))

head(Births78, 2)

date births dayofyear day

1 1978-01-01 7701 1 Sun

2 1978-01-02 7527 2 Mon

ggplot(Births78, aes(x=date, y=births, fill=day)) +

geom_point(color="navy", shape=21)

7000

8000

9000

10000

Jan 1978 Apr 1978 Jul 1978 Oct 1978 Jan 1979
date

bi
rt

hs

day

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

Notice that fill= is now inside aes() in the call to ggplot() rather than an argument to geom_point().
This is how we distinguish between mapping and setting. We could also have made the plot this way:

ggplot(Births78, aes(x=date, y=births)) +

geom_point(aes(fill=day), color="navy", shape=21)

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 10

7000

8000

9000

10000

Jan 1978 Apr 1978 Jul 1978 Oct 1978 Jan 1979
date

bi
rt

hs
day

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

or a bit more verbosely using

ggplot(data=Births78, mapping=aes(x=date, y=births)) +

geom_point(mapping=aes(fill=day), color="navy", shape=21)

7000

8000

9000

10000

Jan 1978 Apr 1978 Jul 1978 Oct 1978 Jan 1979
date

bi
rt

hs

day

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

When there is only one layer in the plot, it does not matter whether the aesthetic mapping is defined in
ggplot() or in geom_point(). When there are multliple layers, however, the mapping done in ggplot()

will affect all of the layers, but the mapping done in each layer affects only that layer. The same is true
for data, since different layers may use different data frames.

If we would prefer to use lines, rather than points, we can easily change the geom:

ggplot(Births78, aes(x=date, y=births, color=day)) +

geom_line()

7000

8000

9000

10000

Jan 1978 Apr 1978 Jul 1978 Oct 1978 Jan 1979
date

bi
rt

hs

day

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

We can even choose to do both points and lines by creating two layers:

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 11

ggplot(Births78, aes(x=date, y=births)) +

geom_line(aes(color=day), size=0.8) +

geom_point(aes(fill=day), color="navy", shape=21)

7000

8000

9000

10000

Jan 1978 Apr 1978 Jul 1978 Oct 1978 Jan 1979
date

bi
rt

hs

day

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

The order of the layers matters. Each layer is created on top of the previous layers.

ggplot(Births78, aes(x=date, y=births)) +

geom_point(aes(fill=day), color="navy", shape=21) +

geom_line(aes(color=day), size=0.8)

7000

8000

9000

10000

Jan 1978 Apr 1978 Jul 1978 Oct 1978 Jan 1979
date

bi
rt

hs

day

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

In this case, it is probably better to leave off the dots. The story is clearer with just the lines. Removing
the border on the dots and making the lines a bit thinner would also improve the plot if we wanted to
retain the dots.

ggplot(Births78, aes(x=date, y=births)) +

geom_point(aes(color=day)) +

geom_line(aes(color=day), size=0.5)

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 12

7000

8000

9000

10000

Jan 1978 Apr 1978 Jul 1978 Oct 1978 Jan 1979
date

bi
rt

hs
day

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

2.4 Stats

So far we have seen only two types of geoms – points and lines. Using the diamonds data set (in the
ggplot2 package), we we will illustrate some additional geoms.

We begin with a histogram of the size (carat) of the diamonds which we can make using geom_bar()
or geom_histogram(), which is essentially another name for geom_bar().

head(diamonds,2)

carat cut color clarity depth table price x y z

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43

2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31

ggplot(data=diamonds, aes(x=carat)) +

geom_bar()

stat_bin: binwidth defaulted to range/30. Use ’binwidth = x’ to adjust this.

ggplot(data=diamonds, aes(x=carat)) +

geom_histogram()

stat_bin: binwidth defaulted to range/30. Use ’binwidth = x’ to adjust this.

0

2500

5000

7500

0 2 4
carat

co
un

t

0

2500

5000

7500

0 2 4
carat

co
un

t

This is mostly straightforward. We have mapped carat to the x-axis and selected the histogram geom.
We are even warned that it would be better if we selected the width of the bins ourselves rather than using
the default value. We’ll do that in our next histogram.

But what about the y-axis? In this case, the default stat is stat_bin(), which creates a new data frame
with one row for each of the bins. A new variable ..count.. gives the number of observations in each

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 13

bin. This happens before geom_histogram() draws the bars. We could have chosen to be explicit about
the y-aesthetic, or we can use the new ..count.. in other ways:

ggplot(data=diamonds, aes(x=carat, y=..count..)) +

geom_histogram(binwidth=.2)

ggplot(data=diamonds, aes(x=carat, fill=..count..)) +

geom_histogram(binwidth=.2)

0

5000

10000

0 2 4
carat

co
un

t

0

5000

10000

0 2 4
carat

co
un

t

0

2500

5000

7500

10000

12500
count

Other variables in the statified data frame allow us to create other types of histograms.

density

ggplot(data=diamonds, aes(x=carat, y=..density..)) +

geom_histogram()

stat_bin: binwidth defaulted to range/30. Use ’binwidth = x’ to adjust this.

proportions -- labeling is ugly, but well learn how to fix that later

ggplot(data=diamonds, aes(x=carat, y=..count../sum(..count..))) +

geom_histogram()

stat_bin: binwidth defaulted to range/30. Use ’binwidth = x’ to adjust this.

0.0

0.3

0.6

0.9

0 2 4
carat

de
ns

ity

0.00

0.05

0.10

0.15

0 2 4
carat

..c
ou

nt
../

su
m

(.
.c

ou
nt

..)

The list of additional variables computed by stat_bin() can be found with

?stat_bin

We end this section with a more unusual representation of the same information.

ggplot(data=diamonds, aes(x=carat, y=..density..)) +

stat_bin(geom="point", aes(size=..count.., color=..count..), binwidth=0.1)

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 14

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
carat

de
ns

ity

0

3000

6000

9000

count

count

0

3000

6000

9000

By now you should be sensing the power in ggplot2’s flexible appraoch to describing graphics. By
combining a few elements (data, aesthetics, geoms, and stats) in a variety of ways, we can create many
useful (and some not so useful) plots.

2.5 Data flow

As a plot is created the original data set undergoes a sequence of transformations.

original data
stat−→ statified data

aesthetics−→ aesthetic data
scales−→ scaled data

At each stage, the available data are stored in a data frame (actually, one data frame for each layer of each
facet).6 At each step the working data frame is transformed into a new data frame, and it is possible for
new variables to be introduced along the way. This explains why the examples above work the way they
do.

2.6 Some more geoms and stats

2.6.1 Frequency polygons

A histogram is not the only way to display the distribution of a quantiative variable. Frequency polygons
are often preferable. Note that there is no special geom for a frequency polygon. Instead, we combine
geom_line() with stat_bin(). Since neither is the default for the other, we must specify both.

combining stat_bin() with geom_line() gives a frequency polygon.

ggplot(data=diamonds, aes(x=carat)) +

geom_line(stat="bin", binwidth=0.05)

ggplot(data=diamonds, aes(x=carat)) +

stat_bin(geom="line", binwidth=0.05)

ymax not defined: adjusting position using y instead

6This is a bit of an oversimplification. Actually, the aesthetics get computed twice, once before the stat and again after. For a
histogram, for example, we need to look at the aesthetics to figure out which variable to bin (that’s the stats job), but it isn’t until
after the binning that we will know the bin counts, which become part of the aesthetics. Nevertheless, the simple version depicted is a
useful starting point. See also page 36 in the ggplot2 book.

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 15

0

2500

5000

7500

0 1 2 3 4 5
carat

co
un

t

0

2500

5000

7500

0 1 2 3 4 5
carat

co
un

t

For those unfamiliar with frequency polygons, we can illustrate their connection to histograms by
creating a plot with two layers. (We’ll use fewer bins here so it is easier to see the connection between the
two types of plots.)

ggplot(data=diamonds, aes(x=carat)) +

geom_histogram(alpha=.3, binwidth=0.4, fill="navy") +

geom_line(stat="bin", binwidth=0.4, color="navy")

0

5000

10000

15000

0 2 4
carat

co
un

t

2.6.2 Density plots

Another common representation of the distribution of a quantitative variable is a density plot. This requires
a new stat: stat_density().

ggplot(data=diamonds, aes(x=carat)) +

stat_density()

0.0

0.5

1.0

1.5

0 1 2 3 4 5
carat

de
ns

ity

The default geom being used is geom_area(), but we could use geom_line() or geom_density() instead
if we preferred. We can also use adjust to control how much smoothing takes place. This is roughly
the equivalent of choosing a binwidth for a histogram. The default value for adjust is 1. Larger values
indicate more smoothing.

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 16

ggplot(data=diamonds, aes(x=carat)) +

stat_density(geom="line", adjust=2)

ymax not defined: adjusting position using y instead

ggplot(data=diamonds, aes(x=carat)) +

stat_density(geom="density", adjust=0.5)

0.0

0.5

1.0

0 1 2 3 4 5
carat

de
ns

ity

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5
carat

de
ns

ity
Alternatively, we could specify the geom and stat this way

ggplot(data=diamonds, aes(x=carat)) +

geom_density()

ggplot(data=diamonds, aes(x=carat)) +

geom_line(stat="density")

ggplot(data=diamonds, aes(x=carat)) +

geom_area(stat="density", adjust=2)

0.0

0.5

1.0

1.5

0 1 2 3 4 5
carat

de
ns

ity

0.0

0.5

1.0

1.5

0 1 2 3 4 5
carat

de
ns

ity

0.0

0.5

1.0

0 1 2 3 4 5
carat

de
ns

ity

Whichever way we choose to do it, we are telling ggplot() both the stat and the geom that should be
used.

In this particular case, we need to be cautious not to oversmooth and lose part of the story. We have
a lot of data (53940 rows), so the spikey appearance of these plots is likely a feature and not an artifact.
In fact, there is a plausible explanation: the peaks coincide with round numbers. Likely the diamond

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 17

producers are targeting diamonds that are approximately 0.5 carat, 1.0 carat, etc. In fact, the peaks seem
to be biased to be just a tad over these round numbers.

2.6.3 Bar charts

Bar charts are much like histograms but work with a categorical variable. A combination of geom_bar()
and stat_bin() produces a bar chart.

ggplot(data=diamonds, aes(x=color)) +

stat_bin() # geom_bar is the default

ggplot(data=diamonds, aes(x=color)) +

geom_bar() # stat_bin is the default

0

3000

6000

9000

D E F G H I J
color

co
un

t

0

3000

6000

9000

D E F G H I J
color

co
un

t

2.7 Boxplots

We’ll illustrate one more geom before moving on to other things. Like histograms, boxplots involve a
non-identity stat (stat_boxplot()) that transforms the data. In this case, there is also a special geom
(geom_boxplot()) for rendering the plot.

That’s almost everything you need to know to make a boxplot. The other thing you need to know is
that the variable being summarized with a boxplot must be the y-variable. This explains why the second
of the plots below doesn’t do anything useful.

ggplot(data=diamonds, aes(x=clarity, y=price)) +

geom_boxplot()

this doesnt do what we might have expected.

ggplot(data=diamonds, aes(y=clarity, x=price)) +

geom_boxplot()

Warning: position_dodge requires constant width: output may be incorrect

Warning: position_dodge requires non-overlapping x intervals

0

5000

10000

15000

I1 SI2 SI1 VS2 VS1 VVS2 VVS1 IF
clarity

pr
ic

e

I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

5000 10000 15000
price

cl
ar

ity

If we want horizontal boxplots, we need to flip them by using a different coordinate system.

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 18

ggplot(data=diamonds, aes(x=clarity, y=price)) +

geom_boxplot() +

coord_flip()

I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

0 5000 10000 15000
price

cl
ar

ity

With large data sets like this, the “whiskers” of a boxplot may not provide a meaningful comparison of
the different groups. Here are two other options for displaying these data.

ggplot(data=diamonds, aes(x=clarity, y=price)) +

geom_jitter(alpha=.1) + # randomly jitter the points a bit

coord_flip()

ggplot(data=diamonds, aes(x=clarity, y=price)) +

geom_violin() +

coord_flip()

I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

0 5000 10000 15000
price

cl
ar

ity

I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

0 5000 10000 15000
price

cl
ar

ity

2.8 But wait, there’s more

A complete list of geoms and stats can be obtained using apropos().

apropos("^geom_") # list all functions starting geom_

[1] "geom_abline" "geom_area" "geom_bar" "geom_bin2d" "geom_blank"

[6] "geom_boxplot" "geom_contour" "geom_crossbar" "geom_density" "geom_density2d"

[11] "geom_dotplot" "geom_errorbar" "geom_errorbarh" "geom_freqpoly" "geom_hex"

[16] "geom_histogram" "geom_hline" "geom_jitter" "geom_line" "geom_linerange"

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 19

[21] "geom_map" "geom_path" "geom_point" "geom_pointrange" "geom_polygon"

[26] "geom_quantile" "geom_raster" "geom_rect" "geom_ribbon" "geom_rug"

[31] "geom_segment" "geom_smooth" "geom_step" "geom_text" "geom_tile"

[36] "geom_violin" "geom_vline"

apropos("^stat_") # list all functions starting stat_

[1] "stat_abline" "stat_bin" "stat_bin2d" "stat_bindot"

[5] "stat_binhex" "stat_boxplot" "stat_contour" "stat_density"

[9] "stat_density2d" "stat_ecdf" "stat_ellipse" "stat_function"

[13] "stat_hline" "stat_identity" "stat_qq" "stat_quantile"

[17] "stat_smooth" "stat_spoke" "stat_sum" "stat_summary"

[21] "stat_summary_hex" "stat_summary2d" "stat_unique" "stat_vline"

[25] "stat_ydensity"

The documentation for these functions can be consulted to learn the options available for each.

2.9 Multiple layers with multiple data sets

Each layer must have data, aesthetics, a geom and a stat, but multiple layers need not share any of these.
It is good practice to put into the arguments of ggplot() those things we are used by all or most of the
layers and leave the rest to be declared in each layer as it is created. In an extreme case, ggplot() might
not use any arguments.

require(scales) # to get the alpha function

D <- filter(diamonds, color=="D")

J <- filter(diamonds, color=="J")

ggplot(mapping=aes(x=carat, y=..density..)) +

geom_histogram(data=D, fill=alpha("navy",0.5), color="navy", binwidth=0.1) +

geom_histogram(data=J, fill=alpha("red",.5), color="red", binwidth=0.1)

ggplot(mapping=aes(x=carat, ymax=..density..)) +

stat_bin(data=D, geom="polygon", fill=alpha("navy",0.5), color="navy", binwidth=0.1) +

stat_bin(data=J, geom="polygon", fill=alpha("red",0.5), color="red", binwidth=0.1)

0

1

2

0 1 2 3 4 5
carat

de
ns

ity

0

500

1000

1500

0 1 2 3 4 5
carat

co
un

t

Notice that the plots above do not have a legend for fill. This is because fill is set, not mapped. We
could use mapping instead, like this:

ggplot(mapping=aes(x=carat, y=..density..)) +

geom_histogram(data=D, aes(fill=color), alpha=0.5, binwidth=0.1) +

geom_histogram(data=J, aes(fill=color), alpha=0.5, binwidth=0.1)

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 20

ggplot(mapping=aes(x=carat, ymax=..density..)) +

stat_bin(data=D, geom="polygon", aes(fill=color), alpha=0.5, binwidth=0.1) +

stat_bin(data=J, geom="polygon", aes(fill=color), alpha=0.5, binwidth=0.1)

0

1

2

0 1 2 3 4 5
carat

de
ns

ity color

D

J

0

500

1000

1500

0 1 2 3 4 5
carat

co
un

t color

D

J

An alternative to this approach collects the data on diamonds with colors D and J into single data
frame.

DorJ <- filter(diamonds, color %in% c("D", "J"))

ggplot(data=DorJ, aes(x = carat, y=..density.., fill = color)) +

stat_bin(geom="ribbon", alpha=0.3, binwidth=0.1, color="black")

ymax not defined: adjusting position using y instead

0

1

2

3

0 1 2 3 4 5
carat

de
ns

ity

color

D

J

But this does something different. In this plot, the two colors (D and J) are stacked rather than overlaid.
We’ll learn how to avoid this stacking and also how to control the colors selected by the scale in Week 2.

3 Describing Plots with qplot()

ggplot2 provides a short-cut that makes it easy to describe certain simple plots using the qplot() function.
In it’s simplest form, qplot() requires only two or three pieces of information:

• the name(s) of one or two variable(s) providing the data to be displayed (x= and y=), and

• the name of a data frame containing those variables (data=).

qplot() will inspect the variables and attempt to make a reasonable plot depending on whether one or
two variables are provided and whether they are categorical (factors) or quantitative (numeric).

3.1 One variable plots

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 21

one categorical variable -> geom_bar + stat_bin

qplot(substance, data=HELPrct)

one quantitative variable -> geom_histogram (+ stat_bin)

qplot(aveDrinks, data=HELPrct)

stat_bin: binwidth defaulted to range/30. Use ’binwidth = x’ to adjust this.

0

50

100

150

alcohol cocaine heroin
substance

co
un

t

0

50

100

0 50 100 150
aveDrinks

co
un

t
3.2 Two variable plots

When two variables are provided, the result is a scatter plot. The first variable goes on the horizontal axis
and the second on the vertical axis.

two quantitative variables -> geom_point (+ stat_identity)

qplot(aveDrinks, maxDrinks, data=HELPrct)

two categorical variables -> geom_point (+ stat_identity)

qplot(sex, substance, data=HELPrct)

0

50

100

150

0 50 100
aveDrinks

m
ax

D
rin

ks

alcohol

cocaine

heroin

female male
sex

su
bs

ta
nc

e

one categorical and one quantitative variable -> geom_point (+ stat_identity)

qplot(sex, aveDrinks, data=HELPrct)

qplot(aveDrinks, sex, data=HELPrct)

0

50

100

female male
sex

av
eD

rin
ks

female

male

0 50 100
aveDrinks

se
x

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 22

Overplotting of data or labels in these plots might render them less than ideal. This is a common
problem in large data sets or when one or more variables are categorical. We’ll learn some methods for
dealing with this soon.

3.3 Mapping aesthetics with qplot()

With qplot() we can map variables to aesthetics without using the aes() wrapper.

qplot(aveDrinks, maxDrinks, data=HELPrct, color=sex, shape=substance)

0

50

100

150

0 50 100
aveDrinks

m
ax

D
rin

ks

substance

alcohol

cocaine

heroin

sex

female

male

qplot(aveDrinks, maxDrinks, data=HELPrct, shape=substance, color=age)

0

50

100

150

0 50 100
aveDrinks

m
ax

D
rin

ks

substance

alcohol

cocaine

heroin

20

30

40

50

60
age

qplot(substance, data=HELPrct, color=sex)

qplot(substance, data=HELPrct, fill=sex)

0

50

100

150

alcohol cocaine heroin
substance

co
un

t sex

female

male

0

50

100

150

alcohol cocaine heroin
substance

co
un

t sex

female

male

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 23

3.4 Setting aesthetics

To set an aesthetic to a constant value, wrap that value in I().

qplot(aveDrinks, maxDrinks, data=HELPrct, alpha=I(0.20), size=I(4), shape=I(18),

color=I("navy"))

0

50

100

150

0 50 100
aveDrinks

m
ax

D
rin

ks

The use of alpha to make the points quite transparent illustrates one way to deal with overplotting. Where
there is more data, the points (diamond-shaped in this plot) become darker.

3.5 Choosing non-default geoms and stats

We can also select non-default geoms and stats.

qplot(aveDrinks, data=HELPrct, geom="density")

qplot(aveDrinks, data=HELPrct, stat="density")

We can change the geom to avoid the additional line segments added by the density geom

qplot(aveDrinks, data=HELPrct, stat="density", geom="line")

0.00

0.01

0.02

0.03

0 50 100
aveDrinks

de
ns

ity

0.00

0.01

0.02

0.03

0 50 100
aveDrinks

de
ns

ity

0.00

0.01

0.02

0.03

0 50 100
aveDrinks

de
ns

ity

Similarly, we can create frequency polygons by using the "bin" stat used to create histograms with the
"polygon" or "line" geoms.

qplot(aveDrinks, data=HELPrct, geom="polygon", stat="bin", binwidth=10)

qplot(aveDrinks, data=HELPrct, geom="line", stat="bin", binwidth=10)

0

50

100

150

200

0 50 100 150
aveDrinks

co
un

t

0

50

100

150

200

0 50 100 150
aveDrinks

co
un

t

Here are some additional examples.

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 24

qplot(aveDrinks, data=HELPrct, geom="line", stat="density", color=substance)

qplot(aveDrinks, data=HELPrct, geom="line", stat="bin", binwidth=10, color=substance)

0.00

0.02

0.04

0.06

0 50 100
aveDrinks

de
ns

ity

substance

alcohol

cocaine

heroin

0

25

50

75

0 50 100 150
aveDrinks

co
un

t

substance

alcohol

cocaine

heroin

qplot(substance, aveDrinks, data=HELPrct, geom="boxplot")

qplot(substance, aveDrinks, data=HELPrct, geom="jitter")

0

50

100

alcohol cocaine heroin
substance

av
eD

rin
ks

0

50

100

alcohol cocaine heroin
substance

av
eD

rin
ks

3.6 More than one geom

It is possible to specify multiple geoms at once. The smooth geom creates a LOESS or regression smoothing
and adds it to the plot.

qplot(aveDrinks, maxDrinks, data=HELPrct, geom=c("point","smooth"), color=sex)

qplot(aveDrinks, maxDrinks, data=HELPrct, geom=c("point","smooth"), color=sex, alpha=I(.5))

0

50

100

150

0 50 100
aveDrinks

m
ax

D
rin

ks sex

female

male

0

50

100

150

0 50 100
aveDrinks

m
ax

D
rin

ks sex

female

male

Many other combinations are possible as well.

qplot(substance, aveDrinks, data=HELPrct, geom=c("boxplot","jitter"), alpha=I(0.2))

qplot(substance, aveDrinks, data=HELPrct, geom=c("violin","jitter"), alpha=I(0.2))

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 1 Dope Sheet Page 25

0

50

100

alcohol cocaine heroin
substance

av
eD

rin
ks

0

50

100

alcohol cocaine heroin
substance

av
eD

rin
ks

This method works as long as all the geoms involved use the same information. Notice how setting the
color below sets the color for both the lines and the bars. Similarly, binwidth is shared by both geoms.

qplot(aveDrinks, data=HELPrct, geom=c("bar","line"), stat="bin", fill=I("skyblue"), binwidth=10)

qplot(aveDrinks, data=HELPrct, geom=c("bar","line"), stat="bin",

fill=I("skyblue"), color=I("navy"), binwidth=10)

0

50

100

150

200

0 50 100 150
aveDrinks

co
un

t

0

50

100

150

200

0 50 100 150
aveDrinks

co
un

t

To achieve finer control, we need to work with geoms and stats directly.

ggplot(data=HELPrct, aes(x=aveDrinks)) +

geom_bar(stat="bin", fill="skyblue", color="navy", binwidth=10) +

geom_line(stat="bin", color="red", size=2, alpha=0.6, binwidth=10)

0

50

100

150

200

0 50 100 150
aveDrinks

co
un

t

3.7 qplot() or ggplot()?

It is tempting for beginners to focus their attention on qplot() and to ignore ggplot(): Many of the most
commonly used plots are easily made using qplot(), the amount of typing is often slightly less, and one
doesn’t need to understand the ggplot2 system as well to get a plot made. The immediate gratification
of making beautiful plots without much effort or thought can be intoxicating.

The downside of qplot() is that is not as flexible, and eventually ggplot() will be required. Learning
to use ggplot() early will make it clearer why ggplot2 behaves the way it does and is better preparation

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 26

for the day when a truly custom plot is required to communicate the story of the data clearly. You are
encouraged to use ggplot() as much as possible, even early on. If you are able to make a plot with
qplot() and cannot replicate it with ggplot(), treat it as an opportunity to understand more fully how
ggplot2 works.

4 Dealing with overplotting in large data sets

We will return to this issue repeatedly during the course, learning more approaches as we go along.
Solutions fall into one of several general categories:

• Use faceting to reduce the amount of data in each subplot

• Use transparency (alpha) to reveal where overplotting is occuring

• Use the jitter geom instead of the point geom when there is significant discreteness in the data. This
moves the points by a small random amount. Some accuracy is sacrificed for the sake of readability.

• Use plots that employ data reduction (e.g., boxplots, histograms, LOESS)

Exercises

1 Take a look at the data visulizations of the New York Times and see if you can describe them using
the vocabulary of the grammar of graphics. (You won’t be able to recreate them unless you can find the
necessary data somewhere.)

2 For each plot in this chapter created using qplot(), recreate the plot using ggplot().

3 Read the help page for a geom that you haven’t used before and use it to make a plot. Note that each
geom lists the aesthetics that it understands (and which are required) as well as the default statistic that
it uses.

You might prefer the documentation at http://docs.ggplot2.org/ to the documentation in the pack-
age since all the plots from the examples appear in the documentation.

dope , n. information especially from a reliable source [the inside dope]; v. figure out –
usually used with out; adj. excellent7

This week’s dope

This week we will learn how to

1. Use faceting to create multi-panel plots

2. Use position controls (jitter, dodge, and stack)

3. Customize the scales used when mapping variables to aesthetics

4. Set the limits of the viewing window for a plot.

5. Modify the labeling of axes and add titles to plots.
7definitions selected from Webster’s online dictionary

c©2013–15 • Randall Pruim

http://www.nytimes.com/newsgraphics/2013/12/30/year-in-interactive-storytelling/#dataviz
http://docs.ggplot2.org/

ggplot2 @ statistics.com Week 2 Dope Sheet Page 27

5 Faceting

Sometimes overplotting can obscure patterns rather than reveal them.

HELPrct <- mutate(HELPrct, aveDrinks = i1, maxDrinks = i2)

Error: binding not found: ’i1’

qplot(aveDrinks, maxDrinks, data=HELPrct, color=substance, shape=sex)

0

50

100

150

0 50 100
aveDrinks

m
ax

D
rin

ks

substance

alcohol

cocaine

heroin

sex

female

male

Faceting creates separate sub-plots for each subset. Faceting is described with a formula and works the
same way whether we create our plot with ggplot() or with qplot().

qplot(aveDrinks, maxDrinks, data=HELPrct) +

facet_grid(sex ~ substance)

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 28

alcohol cocaine heroin

0

50

100

150

0

50

100

150

fem
ale

m
ale

0 50 100 0 50 100 0 50 100
aveDrinks

m
ax

D
rin

ks

Redundant coding is sometimes useful even when faceting.

qplot(aveDrinks, maxDrinks, data=HELPrct, color=substance, shape=sex) +

facet_grid(sex ~ substance)

alcohol cocaine heroin

0

50

100

150

0

50

100

150

fem
ale

m
ale

0 50 100 0 50 100 0 50 100
aveDrinks

m
ax

D
rin

ks

substance

alcohol

cocaine

heroin

sex

female

male

We can also use facet_grid() with only one variable – just put a “dot” in place of the missing variable:

qplot(aveDrinks, maxDrinks, data=HELPrct, color=substance, shape=sex) +

facet_grid(. ~ substance)

qplot(aveDrinks, maxDrinks, data=HELPrct, color=substance, shape=sex) +

facet_grid(substance ~ .)

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 29

alcohol cocaine heroin

0

50

100

150

0 50100 0 50100 0 50100
aveDrinks

m
ax

D
rin

ks

substance

alcohol

cocaine

heroin

sex

female

male

0

50

100

150

0

50

100

150

0

50

100

150

alcohol
cocaine

heroin

0 50 100
aveDrinks

m
ax

D
rin

ks

substance

alcohol

cocaine

heroin

sex

female

male

facet_wrap() can be used when we have one variable for faceting and that variable has many levels

ggplot(data=diamonds, aes(x=carat, y=price, color=color)) +

geom_point(alpha=0.1) +

geom_smooth(se=FALSE, color="black") +

facet_wrap(~ color)

D E F

G H I

J

0

5000

10000

15000

0

5000

10000

15000

0

5000

10000

15000

0 1 2 3 4 5
carat

pr
ic

e

color

D

E

F

G

H

I

J

6 Position – jitter, stack, and dodge

We’ve already seen geom_jitter(), which is really just geom_point() with position="jitter".

ggplot(data=HELPrct, aes(x=substance, y=aveDrinks)) +

geom_jitter()

ggplot(data=HELPrct, aes(x=substance, y=aveDrinks)) +

geom_point(position="jitter")

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 30

0

50

100

alcohol cocaine heroin
substance

av
eD

rin
ks

0

50

100

alcohol cocaine heroin
substance

av
eD

rin
ks

Jittering adds a bit of random noise to the data to help avoid collisions. We can exert more precise
control over the jittering if we use position_jitter(). Since no information is lost when jittering (slightly)
a categorical variable, it is often a good idea to jitter only in one direction when plotting a categorical
varaible against a quantitative variable.

ggplot(data=HELPrct, aes(x=substance, y=aveDrinks)) +

geom_point(position=position_jitter(width=0.1, height=0), alpha=0.5)

0

50

100

alcohol cocaine heroin
substance

av
eD

rin
ks

Two other position adjustments are stacking and dodging. Stacking is the default for geom_bar() and
results in segmented bar charts. Dodging is similar to jitter, but for discrete variables.

ggplot(diamonds, aes(x=color, fill=cut)) +

geom_bar()

ggplot(diamonds, aes(x=color, fill=cut)) +

geom_bar(position="dodge")

0

3000

6000

9000

D E F G H I J
color

co
un

t

cut

Fair

Good

Very Good

Premium

Ideal

0

1000

2000

3000

4000

5000

D E F G H I J
color

co
un

t

cut

Fair

Good

Very Good

Premium

Ideal

Dodging often yields results that are similar to faceting, but the labeling is different, and the results can
be less than pleasing if some of the discrete categories are unpopulated.

ggplot(mpg, aes(x=class, fill=factor(cyl))) +

coord_flip() +

geom_bar(position="dodge")

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 31

ggplot(mpg, aes(x=factor(cyl), fill=factor(cyl))) +

coord_flip() +

geom_bar() +

facet_grid(class ~ .)

2seater

compact

midsize

minivan

pickup

subcompact

suv

0 10 20 30
count

cl
as

s

factor(cyl)

4

5

6

8

45
68

45
68

45
68

45
68

45
68

45
68

45
68

2seater
com

pact
m

idsize
m

inivan
pickup

subcom
pact
suv

0 10 20 30
count

fa
ct

or
(c

yl
)

factor(cyl)

4

5

6

8

7 Scales

As a plot is created the original data set undergoes a sequence of transformations. At each stage, the
available data are stored in a data frame (actually, one data frame for each layer of each facet).8

original data
stat−→ statified data

aesthetics−→ aesthetic data
scales−→ scaled data

In Week 1 we looked at a schematic of the data flow when creating plots with ggplot2, but we said

relatively little about scales.
The final data transformation performed by scales translates the aesthetic data into something the

computer can use for plotting. (Scales also control the rendering of guides – a collective term for axes
and legends – which are the inverse of scales in that they help humans convert from what is visible on the
plot back into the units of the underlying data.) The x- and y-positions are mapped to the interval [0, 1],
and other aesthetics must be mapped to actual colors, sizes, etc. that are used by the geom to render the
plot.

7.1 Position scales

Position scales may be either continuous (for numerical data), discrete (for factors, characters, and logicals),
or date. Each scale has appropriate arguments for controlling how the scale works. Commonly used
arguments include

• trans a transformation to apply to the variable (e.g., "log10")

• breaks manually set the break points for the axes.

• label the name of a emphfunction for processing the values appearing on the axes. Use format=dollar
to format as US currency (dollar() is in the scales package).

8This is a bit of an oversimplification. Actually, the aesthetics get computed twice, once before the stat and again after. For a
histogram, for example, we need to look at the aesthetics to figure out which variable to bin (that’s the stats job), but it isn’t until
after the binning that we will know the bin counts, which become part of the aesthetics. Nevertheless, the simple version depicted is a
useful starting point. See also page 36 in the ggplot2 book.

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 32

• name the name displayed on the guide. This can be useful if the variable name is not appropriate for
this purpose.

• limits for limiting the data used to create the plot.

Here are a few examples.

a <- 1:10; b <- 4 * a^3

artificial <- data.frame(a=a, b=b)

p <- ggplot(data=artificial, aes(x=a, y=b)) +

geom_point()

p

log scaling on the x axis

p +

scale_x_continuous(trans="log10")

Note: dollar is a _function_ in the scales package that formats things as money

require(scales)

p +

scale_x_continuous(trans="log10", breaks=seq(2,10,by=2), label=dollar) +

scale_y_continuous(trans="log10", name="your name here")

0

1000

2000

3000

4000

2.5 5.0 7.5 10.0
a

b

0

1000

2000

3000

4000

1 10
a

b

10

100

1000

$2 $4 $6 $8 $10
a

yo
ur

 n
am

e
he

re

The limits argument of a position scale can be used to limit the data displayed.

p +

scale_x_continuous(trans="log10", breaks=seq(2,10,by=2), label=dollar, limits=c(4,8))

Warning: Removed 5 rows containing missing values (geom_point).

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 33

0

1000

2000

3000

4000

$4 $6 $8
a

b

We will see another way to change the viewing window of a plot in Section 8.

7.2 Discrete color and shape scales

Scales are also used to control how aesthetics are mapped to colors and shapes. scale_color_manual()
can be used to determine exactly which colors are used by a discrete color scale. The values vector used
by scale_color_manual() and scale_shape_manual() may be named or unnamed. If unnamed, the
matching is done by order.

p <- ggplot(data=iris, aes(Sepal.Length, Sepal.Width))

p +

geom_point(aes(color=Species)) +

scale_color_manual(

values=c(setosa="orange", versicolor="purple", virginica="skyblue"))

p +

geom_point(aes(shape=Species, color=Species), size=5, alpha=.5) +

scale_shape_manual(values=c(20,18,17))

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th Species

setosa

versicolor

virginica

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th Species

setosa

versicolor

virginica

There are also a number of scales that provide various color “palettes”.

p +

geom_point(aes(color=Species), size=5, alpha=.5) +

scale_color_brewer(type="qual", palette=1, name="iris species")

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th iris species

setosa

versicolor

virginica

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 34

For more examples, see the http://docs.ggplot2.org/. To find a list of scale functions, use apropos():

apropos("^scale_")

[1] "scale_alpha" "scale_alpha_continuous" "scale_alpha_discrete"

[4] "scale_alpha_identity" "scale_alpha_manual" "scale_area"

[7] "scale_color_brewer" "scale_color_continuous" "scale_color_discrete"

[10] "scale_color_distiller" "scale_color_gradient" "scale_color_gradient2"

[13] "scale_color_gradientn" "scale_color_grey" "scale_color_hue"

[16] "scale_color_identity" "scale_color_manual" "scale_colour_brewer"

[19] "scale_colour_continuous" "scale_colour_discrete" "scale_colour_distiller"

[22] "scale_colour_gradient" "scale_colour_gradient2" "scale_colour_gradientn"

[25] "scale_colour_grey" "scale_colour_hue" "scale_colour_identity"

[28] "scale_colour_manual" "scale_fill_brewer" "scale_fill_continuous"

[31] "scale_fill_discrete" "scale_fill_distiller" "scale_fill_gradient"

[34] "scale_fill_gradient2" "scale_fill_gradientn" "scale_fill_grey"

[37] "scale_fill_hue" "scale_fill_identity" "scale_fill_manual"

[40] "scale_linetype" "scale_linetype_continuous" "scale_linetype_discrete"

[43] "scale_linetype_identity" "scale_linetype_manual" "scale_shape"

[46] "scale_shape_continuous" "scale_shape_discrete" "scale_shape_identity"

[49] "scale_shape_manual" "scale_size" "scale_size_area"

[52] "scale_size_continuous" "scale_size_discrete" "scale_size_identity"

[55] "scale_size_manual" "scale_x_continuous" "scale_x_date"

[58] "scale_x_datetime" "scale_x_discrete" "scale_x_log10"

[61] "scale_x_reverse" "scale_x_sqrt" "scale_y_continuous"

[64] "scale_y_date" "scale_y_datetime" "scale_y_discrete"

[67] "scale_y_log10" "scale_y_reverse" "scale_y_sqrt"

7.3 Continuous color scales

Continuous variables cannot be mapped to shape, but they can be mapped to color, in which case a
spectrum of colors is used.

ggplot(data=iris, aes(Sepal.Length, Sepal.Width)) +

geom_point(aes(color=Petal.Length)) +

scale_color_continuous(low="blue", high="red")

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th

1

2

3

4

5

6

Petal.Length

Those colors are bit hard to look at. Let’s mute them a bit

c©2013–15 • Randall Pruim

http://docs.ggplot2.org/

ggplot2 @ statistics.com Week 2 Dope Sheet Page 35

require(scales)

ggplot(data=iris, aes(Sepal.Length, Sepal.Width)) +

geom_point(aes(color=Petal.Length), alpha=0.7, size=2.5) +

scale_color_continuous(low=muted("blue"), high=muted("red"))

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th

1

2

3

4

5

6

Petal.Length

Divergent scales move in two directions out from a central value. We can also limit the range of the
color scale and map all values outside that range to a color of our choice.

ggplot(data=iris, aes(Sepal.Length, Sepal.Width)) +

geom_point(aes(color=Petal.Length), size=2.5) +

scale_color_gradient2(low=muted("blue"), high=muted("red"), mid="gray80",

midpoint = 3, limits=c(2,6), na.value="yellow")

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th

2

3

4

5

6
Petal.Length

The use of limits can greatly improve the plot if there are small number of outliers with values far
from the others.

8 Coordinate systems

A coordinate system controls how positions are mapped to the plot. The most common (and default)
coordinate system is Cartesian coordinates.

8.1 coord_flip()

We have already encountered coord_flip(), which reverses the roles of the horizontal and vertical axes.
This allows us, for example, to create horizontal boxplots.

ggplot(diamonds, aes(x=color, y=carat)) +

geom_boxplot() +

coord_flip()

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 36

D

E

F

G

H

I

J

0 1 2 3 4 5
carat

co
lo

r

8.2 coord_polar()

There are relatively few uses for the polar coordinate scheme, but it does allow us to create pie charts
(for which there are also relatively few good uses). A pie chart is simply a stacked bar chart in polar
coordinates.

ggplot(data=HELPrct, aes(x=factor(1), fill=substance)) +

geom_bar(width=1) + # avoid space between "bars"

coord_polar(theta="y")

0

100

200

300

400

1

count

fa
ct

or
(1

) substance

alcohol

cocaine

heroin

There is more labeling here than is typical for a pie chart, but since a regular bar chart is easier to read,
we won’t bother with optimizing this plot.

The default value for theta is "x", which produces a “bulls-eye” plot.

ggplot(data=HELPrct, aes(x=factor(1), fill=substance)) +

geom_bar(width=1) + # avoid space between "bars"

coord_polar()

0
100
200
300
400

factor(1)

co
un

t

substance

alcohol

cocaine

heroin

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 37

8.3 coord_map()

We have not yet discussed maps, which require a projection from a sphere to the plane to render on a flat
graphics device. coord_map() faciliates selecting one of several such projections when rendering maps.

8.4 Using coords to zoom

One additional use for a coordinate system is to zoom in on a portion of a plot using xlim and ylim.
Setting limits in a scale removes all data outside those limits from the data frame used to generate the
plot; setting the limits in a coord merely restricts the view – all the data are still used. The difference is
illustrated below. Notice the differences in the smoothing function and also differences in the plot window
used.

ggplot(mpg, aes(cty,hwy)) +

geom_point() + geom_smooth()

20

30

40

10 15 20 25 30 35
cty

hw
y

ggplot(mpg, aes(cty,hwy)) +

geom_point() + geom_smooth() + scale_x_continuous(limits=c(15,25))

ggplot(mpg, aes(cty,hwy)) +

geom_point() + geom_smooth() + coord_cartesian(xlim=c(15,25))

20

30

40

15.0 17.5 20.0 22.5 25.0
cty

hw
y

20

30

40

15.0 17.5 20.0 22.5 25.0
cty

hw
y

When working with discrete data, the limits are set as numerical values in the coord system but as
natural values in the scale (and need not be contiguous or in the original order). There’s really no reason
for a legend on these plots, so let’s turn it off.9

p <- ggplot(diamonds, aes(x=color, y=carat, color=color)) +

geom_boxplot()

p +

scale_x_discrete(limits=c("E","J", "G")) +

9We’ll have more to say about theme() later. Note that theme() replaces opt() from older versions of ggplot2.

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 38

theme(legend.position="none")

p +

coord_cartesian(xlim=c(1.5,4.5)) +

theme(legend.position="none")

0

1

2

3

4

5

E J G
color

ca
ra

t

0

1

2

3

4

5

E F G
color

ca
ra

t

Be sure to leave enough room when setting limits from within a coord as no additional room will be added
to accomodate geoms that are not completely contained in the viewing window.

p +

coord_cartesian(xlim=c(1,5)) +

theme(legend.position="none")

0

1

2

3

4

5

D E F G H
color

ca
ra

t

9 Some shortcuts

9.1 qplot()

Since qplot() produces a plot, we can add to it just like we do other plots.

qplot(carat, data=diamonds) + coord_flip()

0

2

4

0 2500 5000 7500
count

ca
ra

t

qplot() also provides quick access to some common plot modifications:

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 39

• log="x", log="y", and log="xy" can be used for log-transformations of x or y.

• main= can be used to create a plot title.

9.2 xlim() and ylim()

Since limiting the values on a plot is so common, ggplot2 provides the xlim() and ylim() to set limits
without needing to directly invoke scales.

qplot(carat, price, data=diamonds, alpha=I(0.3)) + xlim(c(1,2))

0

5000

10000

15000

1.00 1.25 1.50 1.75 2.00
carat

pr
ic

e

9.3 labs(), xlab(), ylab()

labs() provides a quick way to add labels for the axes and a title for the plot. xlab() and ylab() are
equivalent to labs(x=...) and labs(y=...).

ggplot(diamonds, aes(x=color, y=carat, color=color)) +

geom_boxplot() +

labs(title="Now I have a title", x="color of diamond", y="size (carat)")

0

1

2

3

4

5

D E F G H I J
color of diamond

si
ze

 (
ca

ra
t)

color

D

E

F

G

H

I

J

Now I have a title

10 Dealing with overplotting in large data sets

When there is a high degree of discreteness in the data or the data is very large, multiple points may land
on the same position making it impossible to tell whether there is a lot or a little data there. Here are
several methods for dealing with “too much data for the plot”.

10.1 Jittering

If the primary problem is discreteness and the data set is not too large, simply jittering the position a bit
can be a sufficient solution.

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 40

10.2 Using transparency

A similarly simple solution is to use transparency so that where there is more data, the plot becomes
darker.

10.3 Use plots that rely on data reduction

For 1d plots, histograms, density plots, and boxplots all use data reduction methods, so these plots work
well for data sets of all sizes – except very small data sets, I suppose.

For 2d data, instead of scatterplots, we can use 2d versions of histograms that use rectangular or
hexagonal (requires the hexbin package) bins and use color to represent the bin frequency.

p <- ggplot(diamonds, aes(x = carat, y=depth))

p + stat_bin2d()

require(hexbin) # You may need to install this package from source

Loading required package: hexbin

p + stat_binhex()

50

60

70

80

0 1 2 3 4 5
carat

de
pt

h

1000

2000

3000

4000

5000

count

50

60

70

80

0 1 2 3 4 5
carat

de
pt

h

1000

2000

3000

4000
count

Alternatively, we can plot the contours of a 2d kernel density estimate.

p + stat_density2d()

60

61

62

63

64

0.4 0.8 1.2 1.6
carat

de
pt

h

p + ylim(c(55,68)) +

stat_binhex(aes(fill=..density..)) +

stat_density2d(color="gray75", size=.3)

Warning: Removed 110 rows containing missing values (stat_hexbin).

Warning: Removed 110 rows containing non-finite values (stat_density2d).

c©2013–15 • Randall Pruim

ggplot2 @ statistics.com Week 2 Dope Sheet Page 41

55

60

65

0 1 2 3 4 5
carat

de
pt

h

0.01

0.02

0.03

0.04

0.05
density

c©2013–15 • Randall Pruim

	Preliminaries
	Resources
	R and RStudio
	Packages and Data

	The Grammar of Graphics
	Describing a plot
	Describing another plot
	One more example

	Describing Plots with ggplot()
	Data and aesthetics
	Layers, geoms, and stats
	Aesthetics: mapping and setting
	Stats
	Data flow
	Some more geoms and stats
	Frequency polygons
	Density plots
	Bar charts

	Boxplots
	But wait, there's more
	Multiple layers with multiple data sets

	Describing Plots with qplot()
	One variable plots
	Two variable plots
	Mapping aesthetics with qplot()
	Setting aesthetics
	Choosing non-default geoms and stats
	More than one geom
	qplot() or ggplot()?

	Dealing with overplotting in large data sets
	Faceting
	Position – jitter, stack, and dodge
	Scales
	Position scales
	Discrete color and shape scales
	Continuous color scales

	Coordinate systems
	coord_flip()
	coord_polar()
	coord_map()
	Using coords to zoom

	Some shortcuts
	qplot()
	xlim() and ylim()
	labs(), xlab(), ylab()

	Dealing with overplotting in large data sets
	Jittering
	Using transparency
	Use plots that rely on data reduction

