English Dialect Maps
Mija Van Der Wege
June 13, 2013
Key Questions:
Key Questions:
Figuring out the data: variables, cases, messiness
require(DCF)
load("~/psyc200.RData")
names(psyc200_data)
[1] "sex" "race" "neopiE" "neopiN"
[5] "neopiC" "neopiA" "neopiO" "weaponIAT"
[9] "careerIAT" "empathy" "system" "visualRT"
[13] "visualGoNoGo"
summary(psyc200_data)
sex race neopiE neopiN neopiC
F:42 C :48 Min. : 1.0 Min. : 0.0 Min. : 0.0
M:26 NC:20 1st Qu.:37.0 1st Qu.:15.0 1st Qu.:43.0
Median :54.0 Median :40.0 Median :75.0
Mean :54.7 Mean :39.7 Mean :64.5
3rd Qu.:73.0 3rd Qu.:56.0 3rd Qu.:89.0
Max. :97.0 Max. :97.0 Max. :99.0
NA's :3 NA's :3 NA's :3
neopiA neopiO weaponIAT careerIAT
Min. : 1.0 Min. : 0.0 Min. :0.00 Min. :0.00
1st Qu.:49.0 1st Qu.:29.0 1st Qu.:1.00 1st Qu.:1.00
Median :71.0 Median :64.0 Median :3.00 Median :3.00
Mean :63.9 Mean :54.5 Mean :2.47 Mean :2.29
3rd Qu.:82.0 3rd Qu.:77.0 3rd Qu.:3.00 3rd Qu.:3.00
Max. :97.0 Max. :99.0 Max. :4.00 Max. :4.00
NA's :3 NA's :3
empathy system visualRT visualGoNoGo
Min. :23.0 Min. :11.0 Min. :191 Min. :291
1st Qu.:43.0 1st Qu.:16.0 1st Qu.:255 1st Qu.:348
Median :50.0 Median :24.0 Median :277 Median :382
Mean :49.1 Mean :25.9 Mean :288 Mean :390
3rd Qu.:57.0 3rd Qu.:32.0 3rd Qu.:309 3rd Qu.:422
Max. :70.0 Max. :62.0 Max. :449 Max. :594
NA's :1 NA's :1 NA's :3 NA's :3
psyc200_data <- transform(psyc200_data,weaponIATcat = factor(weaponIAT, labels=c("reverse","none","slight","moderate","strong")))
psyc200_data <- transform(psyc200_data,careerIATcat = factor(careerIAT, labels=c("reverse","none","slight","moderate","strong")))
summary(psyc200_data)
sex race neopiE neopiN neopiC
F:42 C :48 Min. : 1.0 Min. : 0.0 Min. : 0.0
M:26 NC:20 1st Qu.:37.0 1st Qu.:15.0 1st Qu.:43.0
Median :54.0 Median :40.0 Median :75.0
Mean :54.7 Mean :39.7 Mean :64.5
3rd Qu.:73.0 3rd Qu.:56.0 3rd Qu.:89.0
Max. :97.0 Max. :97.0 Max. :99.0
NA's :3 NA's :3 NA's :3
neopiA neopiO weaponIAT careerIAT
Min. : 1.0 Min. : 0.0 Min. :0.00 Min. :0.00
1st Qu.:49.0 1st Qu.:29.0 1st Qu.:1.00 1st Qu.:1.00
Median :71.0 Median :64.0 Median :3.00 Median :3.00
Mean :63.9 Mean :54.5 Mean :2.47 Mean :2.29
3rd Qu.:82.0 3rd Qu.:77.0 3rd Qu.:3.00 3rd Qu.:3.00
Max. :97.0 Max. :99.0 Max. :4.00 Max. :4.00
NA's :3 NA's :3
empathy system visualRT visualGoNoGo weaponIATcat
Min. :23.0 Min. :11.0 Min. :191 Min. :291 reverse : 2
1st Qu.:43.0 1st Qu.:16.0 1st Qu.:255 1st Qu.:348 none :16
Median :50.0 Median :24.0 Median :277 Median :382 slight :14
Mean :49.1 Mean :25.9 Mean :288 Mean :390 moderate:20
3rd Qu.:57.0 3rd Qu.:32.0 3rd Qu.:309 3rd Qu.:422 strong :16
Max. :70.0 Max. :62.0 Max. :449 Max. :594
NA's :1 NA's :1 NA's :3 NA's :3
careerIATcat
reverse : 5
none :17
slight :11
moderate:23
strong :12
table(psyc200_data$weaponIATcat,psyc200_data$careerIATcat)
reverse none slight moderate strong
reverse 1 0 0 1 0
none 3 4 1 6 2
slight 1 5 2 3 3
moderate 0 6 4 6 4
strong 0 2 4 7 3
NEOpi <- subset(psyc200_data, select = c(neopiE,neopiN,neopiA,neopiC,neopiO))
cor(NEOpi,use="complete.obs")
neopiE neopiN neopiA neopiC neopiO
neopiE 1.0000 -0.49173 0.2382 0.1663 0.35560
neopiN -0.4917 1.00000 -0.5355 -0.3897 -0.02323
neopiA 0.2382 -0.53546 1.0000 0.3565 0.01650
neopiC 0.1663 -0.38970 0.3565 1.0000 -0.35206
neopiO 0.3556 -0.02323 0.0165 -0.3521 1.00000
SexPersonality <- groupBy(psyc200_data,by=sex,c(meanE=mean(neopiE,na.rm=TRUE),meanN=mean(neopiN,na.rm=TRUE),meanC=mean(neopiC,na.rm=TRUE),meanA=mean(neopiA,na.rm=TRUE),meanO=mean(neopiO,na.rm=TRUE)))
RacePersonality <- groupBy(psyc200_data,by=race,c(meanE=mean(neopiE,na.rm=TRUE),meanN=mean(neopiN,na.rm=TRUE),meanC=mean(neopiC,na.rm=TRUE),meanA=mean(neopiA,na.rm=TRUE),meanO=mean(neopiO,na.rm=TRUE)))
print(SexPersonality)
sex meanE meanN meanC meanA meanO
1 F 53.95 41.74 65.23 61.62 53.05
2 M 55.88 36.73 63.38 67.19 56.58
print(RacePersonality)
race meanE meanN meanC meanA meanO
1 C 54.72 43.21 64.45 65.45 52.13
2 NC 54.72 30.67 64.61 59.67 60.56
Bar chart?
bwplot(neopiN ~ race, data=psyc200_data)
GoNoGo <- subset(psyc200_data, select = c(visualRT, visualGoNoGo))
ggplot(data=GoNoGo,aes(x=visualRT,y=visualGoNoGo))+geom_point() + stat_smooth(method=lm)
summary(psyc200_data$visualRT)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
191 255 277 288 309 449 3
summary(psyc200_data$visualGoNoGo)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
291 348 382 390 423 594 3